besam(0)

ASSA ABLOY

Besam Swing Door Operator SW200i US

Installation and Service Manual Original instructions

© All rights in and to this material are the sole property of Besam US Inc.. Copying, scanning, alterations or modifications are expressly forbidden without the prior written consent of the applicable company within Besam US Inc.. Rights reserved for changes without prior notice.

CONTENTS

1 Revision 4
2 Important information 5
3 Technical specification 7
4 How the SW200i works 9
5 Models 14
6 Operator/Door handing 16
7 Part identification 17
8 Arm systems 18
9 Options 22
10 Pre-installation 26
11 Mechanical installation 29
12 Electrical connection 46
13 Start-up 55
14 Changing group of parameters 61
15 Classification 65
16 Cover 66
17 ANSI / BHMA A156.10 67
18 ANSI / BHMA A156.19 (LOW ENERGY APPLICATION) 72
19 Troubleshooting 74
20 Maintenance plan 76

1 Revision

Following pages have been revised:

Page	Revision $\mathbf{1 . 0} \rightarrow \mathbf{1 . 2}$
10	Option added
17	Article number updated
48	Illustration updated
48	Lock kick added in illustration
49	Table updated
51	Key impulse time corrected
52	External error indication; Lock added
61	Two new parameter groups
64	New sentence added " Make sure the.."
67	Update according to ANSI/BHMA A156.10-2011
73	Labels added

2 Important information

WARNING!

Failure to observe the information in this manual may result in personal injury or damage to equipment.

Save these instructions for future reference.

2.1 Intended use

The Besam SW200i is an automatic swing door operator developed to facilitate entrances to buildings and within buildings through swing doors. The SW200i is a universal electro-mechanical operator that combines a Heavy Duty (HD) operator for large heavy doors with Low Energy (LE) applications of swing doors. The operator is factory set to Low Energy (LE).
The Besam SW200i can be surface or concealed mounted on either side of the door header for pull or push action, and is suitable for single doors, double doors and double egress doors fitted with swing clear hinges, offset or center pivots.

The Besam SW200i ensures all-around safety. The operator can be combined with a full range of sensor products providing swing door safety, but meets also the requirements for a low energy operator without any sensors.

The operator is connected to the door leaf with a range of different arm systems.
The door is designed to offer continuous use, a high degree of safety and maximum lifetime.
For use see User manual 1007717.

2.2 Safety precautions

Do not climb on door parts.
Do not let children play with the door or the fixed controls.
Be sure to complete the site acceptance test before taking the door into operation, see PRA0007.

To avoid bodily injury, material damage and malfunction of the product, the instructions contained in this manual must be strictly observed during installation, adjustment, repairs and service etc. Training is needed to carry out these tasks safely. Only Besam-trained technicians should be allowed to carry out these operations.

2.3 Electronic equipment reception interference

The equipment complies with the European EMC directive (US market FCC Part 15), provided installed according to Installation and Service manual.

The equipment may generate and use radio frequency energy and if not installed and used properly, it may cause interference to radio, television reception or other radio frequency type systems.

If other equipment does not fully comply with immunity requirements interference may occur. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Re-orient the receiving antenna.
- Relocate the receiver with respect to the equipment.
- Move the receiver away from the equipment.
- Plug the receiver into a different outlet so that equipment and receiver are on different branch circuits.
- Check that protective earth (PE) is connected.

If necessary, the user should consult the dealer or an experienced electronic technician for additional suggestions.
Besam products are equipped with electronics and may also be equipped with batteries containing materials which are hazardous to the environment. Remove this material from the operator before it is scrapped and make sure that it is disposed of properly as was done with the packaging.

This manual contains the necessary details and instructions for the installation, maintenance and service of the Swing Door Operator Besam SW200i.

2.4 Glazing materials

The glazing material for swing doors shall comply with ANSI Z97.1

3 Technical specification

Manufacturer:	Besam US Inc.
Address:	1900 Airport Road, US-Monroe, NC 28110
Type:	SW200i
Power supply:	120 V AC +10/-15\%, $50 / 60 \mathrm{~Hz}$
Power consumption:	max. 300 W
Auxiliary voltage:	24 V DC, max. 700 mA
Internal control fuse:	$2 \times \mathrm{T} 6,3$ AH 250 V
Door width:	$36-48$ " (914-1219 mm)
Electro-mechanical locking device:	Selectable: 12V DC, max. $1200 \mathrm{~mA} / 24 \mathrm{~V}$ DC, max. 600 mA
Door weight:	$100-700 \mathrm{lb} .(45-315 \mathrm{~kg})$
Door opening angle:	PUSH: $80^{\circ}-110^{\circ}$, with reveal 0-12" (0-305 mm)
	PULL: $80^{\circ}-110^{\circ}$, with reveal $0-51 / 8^{\prime \prime}(0-130 \mathrm{~mm})$ PAS: only $80^{\circ}-95^{\circ}$
	$80^{\circ}-95^{\circ}$ in a concealed application
Opening time ($0^{\circ}-80^{\circ}$):	variable between $2-12$ seconds
Closing time ($90^{\circ}-10^{\circ}$):	variable between $4-12$ seconds
HOLD open time:	1,5-30 seconds
Ambient temperature:	$-4{ }^{\circ} \mathrm{F}$ to $+113{ }^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$
Relative humidity (non-condensing):	Max. 85\%
Drive unit weight:	19,8 lb. (9 kg)
This product is to be installed internally or externally with suitable weather protection.	
Class of protection IP 20.	
Complies with: ANSI/BHMA A156.19, ANSI/BHMA A156.10, UL 325, UL 991, UL 244A, UL 1998, UL 1310, UL 10C, CAN/CSA-C22.2 N0 223-M91 and CAN/CSA-C22.2 N0 247-92	
Approvals:	Third party approvals from established certification organizations valid for safety in use and escape route safety. For details see Declaration of Conformity.

3.1 Opening times

Opening time is adjustable from 2-12 seconds and dependent on the weight, width and installed arm system of the door. For max opening times on low energy doors, see Table I on page 72.

4 How the SW200i works

The swing door operator SW200i uses a DC motor which is connected to the output shaft by a combination of a bevel gear and spur gears. The arm system that is connected to the output shaft opens the door in a wall mounted application.
There is also an adjustable spring mechanism connected to the output shaft. During opening of the door, the clock spring is tensioned by the rotation of the output shaft. During the closing cycle, the accumulated spring force is acting in the closing direction. The spring force can be adjusted so there is appropriate force to close the door when it is operated manually or in case of a power failure.

4.1 Opening

When an opening signal is received by the control unit, the door is opened at the operator-adjusted opening speed. Before the door is fully open at back check, it slows automatically to low speed. The motor stops when the selected door opening angle has been reached. The open position is held by the motor.

If the door is obstructed while opening, it will either stall or stop which can be selected with a DIP-switch (SOS). Stop on stall is always active in program selector Mode Off.

- Continue on stall - the door will continue to try to open during the hold open time.
- Stop on stall - the door will, even if hold open time has not expired, close after 2 seconds.

4.2 Closing

When the hold open time has elapsed, the operator will close the door automatically, using spring force and motor. The door will slow to low speed at latch check before it reaches the fully closed position. The door is kept closed by spring power or combined with extended closing torque by the motor.

4.3 Control switch

4.3.1 ON/OFF/HOLD open switch (option)

Function	Program
ON	Impulses from activation units connected to XIMP are forwarded into inner impulse "CU-200" on page 48.
OFF	Impulses from activation units connected to XIMP are not forwarded into inner impulse. These units cannot open the door.
HOLD	The door is held permanently open.

4.4 Functions on the basic control unit CU-200

Also see page 48 for more information.

4.4.1 Power failure

During power failure the operator acts as a door closer with controlled closing speed. The micro switch located next to the spindle shaft can be adjusted to control when lock kick occurs.

4.4.2 Spring force

The operator is delivered with spring pre-tension factory set to 360°. If necessary, the spring tension can be electronically adjusted with a potentiometer to required closing force, but max total 720°. The arm must also be relocated on the spindle.

4.4.3 Extended closing torque (CLTQ)

If the potentiometer CLTQ is set to 0°, the door will close with normal spring power. If the potentiometer is turned clockwise, the motor will increase the closing torque. Extended closing torque will be reduced to zero:

- If the door mounted sensor presence detection is activated during the last 10° before closing.
- If the door mounted sensor presence impulse is activated in closed position or during closing (even if manually opened).

4.4.4 Power assist (POAS)

If the potentiometer POAS is set to 0°, the door gives no power assist. If the potentiometer is turned clockwise, the motor will give/increase power assist when the door is opened manually. The range of the POAS is depending on the spring pre-tension.

4.4.5 Push and go (PAG)

DIP-switch to select Push and Go, ON or OFF. Push and Go is available from any door position. Push and Go is not active in programme selector setting OFF.

4.4.6 Overhead presence detector (OPD), frame mounted

When an OPD sensor is mounted on the frame or operator cover just above the swing side of the door, it will-when activated-either keep the door open or closed. The sensor input is not sensative during opening and closing. Lock-out signal is available as it is required by some OPD sensors for proper function.

- a closed door will not open, if the OPD detects activity in the field
- an open door will not close, if the OPD detects activity in the field
- during opening, the door will continue to open, even if the OPD detects activity in the field
- during closing, the door will continue to close, even if the OPD detects activity in the field
- the OPD is not active in program mode OFF or manually opened door
- during closing, if an activation occur the door will re-open.

4.4.7 Activation delay

This function requires a constant inner impulse for the specified time before the door will open. Fixed 2 sec .

During closing the door will reopen immediately if impulsed.

4.4.8 Mat

Mat safety means that:

- a closed door will not open, if someone steps on the mat
- an open door will not close, if someone steps on the mat
- during opening, the door will continue to open, even if someone steps on the mat
- during closing, the door will continue to close, even if someone steps on the mat
- opening impulses are prevented during closing, if someone steps on the mat
- the mat is not active in program mode OFF or manually opened door.

4.5 Functions on the extension unit EXU-SI

Also see page 51 for more information.

4.5.1 KILL function

In the event that the KILL circuit is activated, all Safety Functions of the door will be overridden causing the door to close even though an object or person may be in the door's path of travel, and therefore may be subject to injury. This mode of operation is most generally used to isolate an area in the event of a fire.

- During KILL, the control will ignore all signals and close door(s) at normal speed.
- If impulse controlled KILL: The operator will resume normal operation after a KILL RESET. When manual RESET, jumper must be removed and reset button connected to terminal No. 8 and Ground.
- Or if state controlled KILL: When KILL signal is no longer active, operator will resume normal operation.
- The behavior of the lock during KILL depends on the group of parameters. See page 61.
- The KILL input may be connected to either a normally open contact with GND as reference or a normally closed contact with QTST as reference, depending of group of parameters, see page 61 .

4.5.2 Function of locks

- The lock output only works when the function switch is in OFF or EXIT. If no function switch is used, OFF or EXIT must be connected to GND (0 VDC).
- The control has an available output of DC for external locks
- DIP-switches to select 12 or 24 V DC, locked with or without power
- DIP-switch for lock release and potentiometer for opening delay
- DIP-switch for lock kick to overcome binding in the locking device during closing
- Input to unlock signal from lock. Potentiometer for opening delay is to be set to max. As soon as unlock signal is received the door will start to open. The lock output signal shall be active low.
- If the door cannot fully close, the operator will perform a lock retry (once if manually open, twice if automatically open).

4.5.3 Panic bar

Panic bar can be disabled by the relay function on the extension board EXU-SA and an external power supply. Panic bar will then only be active during KILL. See Changing group of parameters on page 61 .

4.5.4 Program selector (wall mounted)

- Input for OPEN, EXIT and OFF (if no program selector, AUTO is default).

Note: In OFF-position the operator will comply with the Low Energy Regulation.

4.5.5 Impulses

- Input for OUTER impulse, KEY impulse and OPEN/CLOSE impulse.

4.5.6 OPEN/CLOSE impulse

The impulse will open the door and the door will stay open until a new impulse is given. If no impulse is given the door will close after 15 minutes. This can be made infinite by changing group of parameters, see page 61 .
OPEN/CLOSE impulse works only in program selection AUTO. Can be programmed for OFF and EXIT as well. See page 61.

4.6 Functions on the extension unit EXU-SA

Also see page 52 for more information.

4.6.1 Presence impulse approach, door mounted

The presence impulse is active during fully open and closing. The sensor is mounted to the approach side of the door. Once the door is closed, the sensor is ignored and will not be active until the next impulse is received.

Note: When installed as a pair of doors, the presence impulse signal will re-open both doors. The sensor is not active in program mode OFF or manually opened door (Power Failure Mode or during KILL function).

4.6.2 Presence detection swingpath, door mounted

When a sensor that is mounted on the swing side of a door detects an object, it will send a command to the control unit to stall the door. If the control unit has received a short signal from the sensor and there is still hold open time left on the control unit, the door will continue on its way open if the object has cleared.
The inhibit/blanking potentiometer can be adjusted so that the sensor will avoid detecting a wall or object near the full open position. Presence detection has a higher priority than presence impulse.

Note: When installed as a pair of doors the presence detection signal will stop both doors, except for double egress doors. The behavior for double egress doors can be changed. The sensor is not active in program mode OFFor manually opened door. In this OFF-mode the operator fulfills the Low Energy Standards.

4.6.3 Monitored safety sensors

Both presence impulse and presence detection can be monitored. If a sensor becomes defective, the operator will not accept any impulses and will then work as a manual door closer.

4.6.4 Relay output

- Error indication

A potential free contact COM/NO/NC for external error indication, see "Error indication" on page 75.

- KILL output

NO or NC signal

- Door indication

Used to indicate an open or closed position of the door. The indication position is set by adjusting the inhibit/blanking potentiometer.

- Panic bar

Parameter group 14

5 Models

The Besam SW200i operator can be surface mounted or concealed installed. These two versions can be used in the following installations:

- Single doors
- Double doors (two operators)
- Double egress doors (two operators)

The operators are non-handed and not dependent on the hinges. The operators suit both pushing and pulling arm systems.

5.1 Single operator, surface mounted

The product is delivered complete with back plate, control unit, end plates and cover. Length including end plates, $\mathrm{L}=39.5 "(1003 \mathrm{~mm})$.
Pushing arm system shown. Other lengths are optional.

5.2 Double operator, surface mounted

Note: Consult Product Order form for availability
The product is delivered complete with back plate, control unit, end plates and cover. Cover length L is optional.

Two operators can be mounted under the same cover to open one door each. Pushing and pulling arm system shown (double egress).

It is also possible to use two pushing or two pulling arm systems.

5.3 Concealed mounted

The concealed operator is used to control a center-pivot door, with the operator integrated and concealed in the header above the door. The door can be opened in a direction opposite to normal in an emergency (panic breakout). Manual reset by pushing the door back into normal operation sector is necessary.

A concealed operator can also be installed in the ceiling space above the door (bottom load). Such applications may require field engineering of components and hardware.

Operator for right handed door

Operator for left and right handed door

6 Operator/Door handing

6.1 Operator handing

Surface Applied

Pull

Concealed

6.2 Door handing

Door handing is determined by standing with your back to the hinges. The side that the door normally opens (right or left) is the handing of the door. The illustration below shows a righthanded door.

$7 \quad$ Part identification

7.1 Surface mounted - Side loaded

Item No.	Art. No.	Description
1	1003547	Back plate (shorty)
2	1007291	Transmission unit
3	1007752	Control unit CU-200
4	330000276	Stop arm kit
5	1003543	End plate
6	1003546	Cover (shorty)
7	1003582	ON/OFF/HOLD open switch
8	1008545	Fill cover (output shaft)
9	1003583	Sync cable - optional
-	1007504	Connection box
10	33003542	End plate cover
11	330000271 SI/BK	PUSH service kit
12	33000272 SI/BK	PULL service kit
13	3310000275	Micro switch kit incl. cam
14		Knockouts for cable inlet
15		Fixing kit
16		

8 Arm systems

8.1 Pushing installation with PUSH-arm

This arm system is delivered with drive arm, telescopic part and door fitting. It is used if the operator is installed on the wall on the opposite side of the door swing, and approved for fire door application.

P/N:1007241BK, 1007241SI

Frame depth		
Extension	Standard	High Performance
345 mm extension P/N: 173005 $\mathbf{2 3 0} \mathbf{~ m m}$ extension P/N: 173004 Joint part P/N: 173191		
	A = reveal	$A=$ reveal
None (Standard arm)	0 to 3 3/4" (0-95 mm)	0 to $37 / 8^{\prime \prime}(0-99 \mathrm{~mm})$
Extension L=345 mm	$33 / 4$ to $81 / 4$ " (95-210 mm)	$37 / 8$ to $91 / 16^{\prime \prime}(99-230 \mathrm{~mm})$
Extension $\mathrm{L}=230 \mathrm{~mm}+$ joint part	$81 / 4$ to $131 / 32$ " (210-335 mm)	$91 / 6$ to $141 / 4$ " (230-362 mm)

8.2 Pulling installation with PULL-arm

This arm system is delivered with drive arm, guide shoe and door fitting.
P/N: 1007251BK, 1007251SI

8.3 Pulling installation with PAS-arm

This arm system consists of main arm, slide track, roller guide and shaft adaptor. It can be fitted on combinations of doors and jambs (walls), where the total reveal from the wall line to the door leaf does not exceed $51 / 8^{\prime \prime}$.

P/N: 1007476BK (left), 1007476SI (left)

P/N: 1007247BK (right), 1007247SI (right)

8.4 Pushing installation with PULL-arm (Sliding PUSH)

This arm system consists of main arm, slide track, guide shoe and shaft adaptor. It can be fitted on combinations of doors and jambs (walls), where the wall thickness does not exceed approx. $41 / 2^{\prime \prime}$. Dimensions given here correspond to an opening angle of $90-100^{\circ}$.

P/N: 1007251BK, 1007251SI

Note: Limited performance not for windy condition or high stack pressure. Maximum door weight 265 lbs and width 48".

8.5 Double door installations

There are four different types of double door installations:

- Astragal - Has an overlapping master door, can be opened synchronously if it is not jamming and must be closed asynchronously to avoid that the doors will jam or close in the wrong order.
- Jamming - This door type needs to be opened and closed asynchronously to avoid that the doors will jam with each other.
- Not jamming, not rebated - This door type has doors that always can move independently of each other and can be opened and closed synchronously.
- Double egress - This door type has doors that opens in different directions which can be opened and closed independently. This door type may have a different way of handling safety sensors due to the difference in opening direction of the doors.

Also see page 53.

8.5.1 Nurse and bed functionality

Connect a $1 / 0$-switch to the slave control unit. This will make it possible to open only the master door, and both doors if necessary.
If Push and Go is ON the bed functionality can also be achieved by manually pushing the slave door which will start the door to open manually.

8.6 Drive shaft extension kits

9 Options

9.1 Push plates

For DISABLED or ADA use, mount push plate 31 " above floor level.
9.1.1 Push plates

P/N: 75-02-101

P/N: 75-02-107

P/N: 75-02-102

P/N: 75-02-108

P/N: 75-02-280
9.1.2 Remote transmitter push plates

P/N: 75-02-273

P/N: 75-02-272

P/N: 75-02-269 P/N: 75-02-270
9.1.3 Installation box for narrow plates

P/N: 75-21-002
9.1.4 Remote receiver

P/N: USRD433

9.2 Sync cable for double doors (synchronizing of 2 operators)

Note: The connection/marking of the sync cable determines which of the operators is the MASTER and SLAVE

P/N: 1003583

9.3 Accessories

3-position switch P/N: 75-15-310 Clear P/N: 75-15-310 Black	$\begin{gathered} \text { PS-4C } \\ \text { P/N: } 655845 \end{gathered}$
ON/OFF/HOLD open switch P/N: 1003582	Surface mounting box P/N: 655806
	For use with PS-4C (P/N: 655845)

9.4 Labels

Label kit P/N: 1007317

P/N: 75-20-100
Dual Side "AUTOMATIC DOOR / DO NOT ENTER" - Out

P/N: 75-20-101
Dual Side "AUTOMATIC DOOR / DO NOT ENTER" - In

P/N: 21-24-005
Dual side "Operator designed for disabled people"

PUSH TO ACTIVATE

P/N: 21-24-006
Push side "PUSH TO ACTIVATE"

PULL TO

 ACTIVATEP/N: 21-24-008
Pull side "PULL TO ACTIVATE"

ACTIVATE

SWITCH TO OPERATE

P/N: 21-24-007
Dual Side "Activate Switch to Operate"

P/N: 24-0850-01
"Danger"

P/N: 24-0489-01
"Safety information"

P/N: 50-24-020
"Safety information"

ANNUAL COMPLIANCE INSPECTION	
Inspected for and complies with ANSI A156.	
DATE:	P/
by AAADM Certified Inspector	"Certified Inspector"
ber:	

10 Pre-installation

10.1 Types of installation

Surface Installation

Surface Applied means that the operator and header are mounted on the surface of the wall, and an external arm system is used to operate the door.

A surface applied header is typically $3 "$ longer than the concealed in order to attach easily to the jambs.

Standard installation is made with the distance $33 / 4$ " $(95 \mathrm{~mm})$ from hinge Ψ to outgoing shaft. High performance installation, used in windy conditions and heavy doors is made with the distance $81 / 4^{\prime \prime}(210 \mathrm{~mm})$ from hinge \mathcal{E} to outgoing shaft.

Retrofit installations may be done even with the distance of $23 / 4^{\prime \prime}(70 \mathrm{~mm})$ from hinge \mathcal{E} to outgoing shaft.

10.2 General tips/Safety concerns

- For enhanced security and vandalism protection, always mount the operator access in the interior of a building whenever possible.
- Make sure that the power is off before installing.
- Make sure that the door leaf and the wall are properly reinforced at the installation points.
- Inspect the door hinges before installation to ensure that they are in good repair.
- Unpack the operator and make sure that all parts are delivered in accordance with the packing note.

10.3 Installation examples

(2)

A Steel reinforcement or rivnut
B Wood reinforcement
C Expansion-shell bolt (for brick wall min. M6x85, UPAT PSEA B10/25)

10.4 Fastening requirements

Base material	Minimum requirements of wall profile*
Steel	$3 / 16^{\prime \prime}(5 \mathrm{~mm})^{* *}$
Aluminium	$1 / 4^{\prime \prime}(6 \mathrm{~mm})^{* *}$
Reinforced concrete	$\min .2^{\prime \prime}(50 \mathrm{~mm})$ from the underside
Wood	$2^{\prime \prime}(50 \mathrm{~mm})$
Brick wall	Expansion-shell bolt, min. M6x85, UPAT PSEA B10/25, min. $2^{\prime \prime}(50 \mathrm{~mm})$ from the underside

* Besam minimum recommended requirements. Building Codes may give different specifications. Refer to AHJ (Authority Having Jurisdiction).
** Thinner wall profiles must be reinforced with rivnuts.

10.5 Tools required

- Metric Allen keys 3; 4; 5 and 6 mm
- Tool for screw between cover and backplate (?)
- Flatblade screwdriver (potentiometer and terminal size)
- Screwdriver (Philips size 2)
- Nut driver, 5 mm
- Tape rule
- Power drill and set of drill bits
- Center punch
- Wire stripper
- Silicone sealant
- Installation and Service Manual (this manual)

10.6 Installation on double doors

If the operators are to be mounted at the same height with pushing and pulling arm systems, the height is determined by the pulling arm system, PULL. The pushing arm system PUSH must always have a shaft extension, minimum 2" (50 mm), maximum $23 / 4 "(70 \mathrm{~mm})$ to match the mounting heights visually.

Example: if PULL has a 3/4" (20 mm) extension, the PUSH must have a $23 / 4 "(70 \mathrm{~mm})$ extension. If PULL has 0 " mm extension, the PUSH must have a $2 "(50 \mathrm{~mm})$ extension.

For installation, follow the instructions for the applicable arm system.

11 Mechanical installation

11.1 Surface mounted installation

The operator is mounted on either side of the door header with two available spindle locations, Standard 3 3/4" (95 mm) and High performance $81 / 4 "(210 \mathrm{~mm})$ between hinges and outgoing shaft, depending on type of doors.

The Standard installation is best suited according to ANSI / BHMA A156.19 and ADA 28 CFR Part 3. The High performance installation is used in windy environments, when heavy doors are used and when there are big differences in pressure.

The door is controlled with a push or pull arm system.
Note: Consider all power wire entry locations and signaling wires before preparing back plate.

11.1.1 PUSH arm system

See page 31 for 3 3/4" (95 mm) installation.
See page 34 for 8 1/4" (210 mm) installation.

Operator with PUSH arm system 3 3/4" (95 mm)

Cont."Operator with PUSH arm system" 3 3/4" (95mm)

Cont."Operator with PUSH arm system" 3 3/4" (95 mm)

See table Frame Depth on page 18 for available extensions.
Continue on page 46.

Operator with PUSH arm system 8 1/4" (210 mm)

Cont."Operator with PUSH arm system" 8 1/4" (210mm)

Cont."Operator with PUSH arm system" 8 1/4" (210 mm)

Note: Important measurement for correct opening and closing force.

VII)

Continue on page 46.

11.1.2 PULL/PAS arm system

Operator with PULL/PAS arm system 3 3/4" (95 mm)

$X=$ See page 44 how to measure the distance.

Cont. Operator with PULL/PAS arm system 3 3/4" (95 mm)

X = See page 44 how to measure the distance.
Continue on page 42 or 43.

Operator with PULL arm system 8 1/4" (210 mm)

$X=$ See page 44 how to measure the distance.

Cont. Operator with PULL arm system 8 1/4" (210 mm)

$\mathrm{X}=$ See page 44 how to measure the distance.

Cont. "Operator with PULL arm system"

III)

IV

Cont. "Operator with PAS arm system"

IV

a Locate the door in closed position.
b Fix the main arm with guide shoe (1) loose onto the operator shaft so that the guide shoe is just in contact with the door.
c During the opening and closing movement of the door, the guide shoe (1) will move a certain distance on the door. Mark the end positions for this distance.

Note: The end positions do not always occur when the door is fully closed and fully open.
d Position the slide track (3) symmetrically over the marks on the door, with the centre of the fixing holes, W+2 $1 / 8^{\prime \prime}$ (see table on page 37), from the lower edge of the operator. Mark on the door for the fixing holes. Drill and thread or use rivnuts.
e Attach the slide track (3) to the door with the guide shoe (1) fitted into the track. Use appropriate screws.

1 Guide shoe
2 Main arm
3 slide track

11.1.3 Operator with sliding PUSH arm system

For installation see PULL arm system on page 37.

12 Electrical connection

Note: The installation shall be made according to local standards UL325 56.1.3.

- When working in, with or around electrical circuits, all power must be disconnected.
- If the supply cord is damaged, it must be replaced by the manufacturer, its service agent or similarly qualified persons in order to avoid a hazard.

12.1 Connection box

12.1.1 Fitting

Fit the connection box in the back plate as shown below.
Note: To ensure for sufficient grounding, the square nuts must be turned with the teeth upwards against the box so that they cut through the anodizing in the back plate.

12.1.2 Connection

a Switch off the electrical power.
b Unscrew the lid (1).

c Strip approximately 5 inches off from the outer insulation of the power installation cable (2).
d Insert the free end of the power installation cable into the connection box (3) through the metal strain relief (4).
e For the following connections: Use twist-on wire connectors ("wire nuts") (5), that are approved for the application. The wires should be stripped according to the instructions for the used wire connector. Be aware, local code shall be followed.

- Connect the (white) neutral wire of the power installation cable with the AWG18 (white) neutral wire that extends from the CPD metal housing (6).
- Connect the (black) phase wire of the power installation cable with the free AWG18 (black) wire of the cable of the rocker switch assembly (7).
- Connect the solid green earth wire (8), that is attached to the bottom of the connection box, with the green earth wire of the power installation cable (2), and the green earth wire of the interconnection cable (9).
f Tuck the slack of the wires into the largest compartment, between the CPD metal housing (6) and the wall of the connection box. Be careful not to place connectors, or excessive loops of wire, on top of the CPD metal housing as they might interfere with the fastening of the cover.
g Fasten the lid (1) of the connection box.

12.2 How to route the cables

12.3 Control units

12.3.1 CU-200

The CU-200 can be equipped with extension units, EXU-SI and/or EXU-SA, depending on the functions required, see page 51 or 52 .

* After changing MAT dip switch a new LEARN must be carried out.
** With heavier doors the time will increase.

12.3.2 Arm system selection

Factory set arm configuration is PUSH $81 / 4^{\prime \prime}(210 \mathrm{~mm})$, if other is required:
Select arm configuration on the DIP-switches according to the table below.

Type of arm system	Spindle location (hinge to outgoing spindle)	$\mathrm{ON}=1 \mathrm{OFF}=0$			
		$\begin{gathered} \text { AS } 1 \\ \text { DIP } 5 \end{gathered}$	$\begin{gathered} \text { AS } 2 \\ \text { DIP } 6 \end{gathered}$	$\begin{gathered} \text { AS } 3 \\ \text { DIP } 7 \end{gathered}$	$\begin{gathered} \text { AS } 4 \\ \text { DIP } 8 \end{gathered}$
Pushing	PUSH, $81 / 4{ }^{\prime \prime}(210 \mathrm{~mm})$	0	0	0	0
Pushing	PUSH, 3 3/4" (95 mm)	1	0	0	0
Pushing	PUSH, 2 3/4" (70 mm)	0	1	0	0
		1	1	0	0
		0	0	1	0
		1	0	1	0
		0	1	1	0
		1	1	1	0
Pulling PULL	PULL, $81 / 4$ " (210 mm) Reveal $0^{\prime \prime}-29 / 16{ }^{\prime \prime}(0-65 \mathrm{~mm})$	0	0	0	1
Pulling PULL	PULL, 8 1/4" (210 mm) Reveal 2 9/16" - 5 1/8" (65-130 mm)	1	0	0	1
Pulling PULL/PAS	PULL, 3 3/4" (95 mm) Reveal 0" - 2 9/16" (0-65 mm) PULL, 2 3/4" (70 mm) Reveal 0" - 2 9/16" (0-65 mm)	0	1	0	1
Pulling PULL/PAS	PULL, 3 3/4" (95 mm) Reveal 2 9/16" - 5 1/8" ($65-130 \mathrm{~mm}$) PULL, 2 3/4" (70 mm) Reveal 2 9/16" - 5 1/8" ($65-130 \mathrm{~mm}$)	1	1	0	1
		0	0	1	1
Sliding push	PULL 210, 8 1/4" (210 mm) Distance $($ Reveal + Door thickness + hinge $)=75-130 \mathrm{~mm}$	1	0	1	1
Sliding push/Offset pivot	PULL 95, 3 3/4" (95 mm) Distance $($ Reveal + Door thickness + hinge $)=0-80 \mathrm{~mm}$	0	1	1	1
Concealed arm	-	1	1	1	1

Note: After changing any system selection a new LEARN must be carried out.

12.3.3 Extension units EXU-SI / EXU-SA

Installation

To extend the functions, the extension units can be mounted on top of the control unit CU-200, separately or combined.

Note: After changing/replacing an extension unit a new LEARN must be carried out.

12.3.4 Extension unit EXU-SI

Functions

This extension unit has inputs for electro-mechanical lock, program selector, batteries, KILL function, OPEN/CLOSE, KEY opening and outer impulse.

1) Independent of switch position (ON /OFF), the "latch check" complies with the ANSI 156.19 requirements. Position OFF: Smooth closing, to be used on doors without lock.
Position ON: More powerful closing, to be used on doors with lock, to overcome binding in the locking device.
2) If the switch is set to ON, the LOCK RELEASE is active during the opening delay time set by the potentiometer. For PAIR OF DOORS installations, the LOCK RELEASE works in sequence: First the MASTER then the SLAVE.

Note: Lock only functions when Program Selector is in OFF or EXIT.

* After changing any system selection a new LEARN must be carried out.

12.3.5 Extension unit EXU-SA

This extension unit has inputs for door mounted sensors, which can give presence impulse on approach side and/or presence detection on swing path side. Relay output for error indication or door indication is also integrated.

Functions

[^0]12.3.6 How to cut the jumper on the sync cable for double doors

Note: Connect a cable between Master CU TB1(GND) and Slave CU TB1(GND).

Function	Door design		Cut the jumper with color		
Opening	Closing	Astragal	Jam- ming	MASTER side	SLAVE side
Synchronous	Synchronous	No	No	No cutting	No cutting
Synchronous	Asynchronous	Yes	No	Cut black	No cutting
Asynchronous	Asynchronous	Yes	Yes	No cutting	Cut red
Double egress		-	-	Cut black	Cut red

Also see page 20.
12.3.7 Settings for double doors

Function	Settings on the	
	MASTER	SLAVE
Common		
Program selection	X	
Opening time	X	
Closing time	X	
Hold open time	X	
Close / Continue to open when the door is obstructed	X	
PAG On/Off	X	
SOS On/Off	X	
Level of Power assist	X	$\mathrm{X})^{*}$
Extended closing torque	X	$\mathrm{X})^{*}$
OPD Impulse or Mat Logic Impulse	X	
Individual	X	
Lock/Unlock signal voltage	X	X
Locked without/with power	X	X
Lock release Enable/Disable	X	X
Open Delay Time	X	X
Lock kick Enable/Disable		

* For "Double egress doors", these functions must be set separately for MASTER and SLAVE as the arm systems as well as the air pressure may be different.

Note:

- Locks on the MASTER and SLAVE doors must be connected to the control unit (CU) on the corresponding operator.
- Inner and outer impulses can be connected to either MASTER or SLAVE CU or both.
- The OPD is to be connected to the MASTER CU except for "Double egress", where each OPD must be connected to corresponding CU.
- Door leaf mounted sensors must always be connected to corresponding CU.

13 Start-up

The spring pre-tension is factory set to $\mathbf{3 6 0}$ and is normally not necessary to adjust. If adjustment has to be carried out, see "Reducing / Increasing the "Spring pre-tension" (SPTE)" on page 64.
Check and adjust the micro switch (1), controlling the lock kick, by turning the white plastic cam (2) when power is off.

13.1 Adjusting the door stop

a Close the door.

b Turn the potentiometer SPTE to 0° (if not already on 0°).

c Switch on the electrical power (the operator will find its closed position) and make sure the LED is on.

d Open the door to required open position, plus approx. $5 / 8^{\prime \prime}(15 \mathrm{~mm})$, by turning the potentiometer SPTE on the CU-200, clockwise.

e When stop arm is on top of the operator, lift the door stop arm up and mount it on the splines, as close as possible to the stop block 1). Fine-adjust if necessary with the screw on the stop arm 2).

f When stop arm is on the bottom of the operator, loosen the stop ring and the stop arm. Mount the stop arm on the splines, as close as possible to the stop block 3). Mount the stop ring. Fine-adjust if necessary with the screw on the stop arm 4).

g Close the door by turning the potentiometer SPTE to 0° and let the door close.

Note: Impulses are not accepted if SPTE is more than 0°.

1 Door stop arm
2 Stop block
3 Fine-adjustment screw

13.2 Auto-learn - automatically sets back and latch check (recommended)

This learning is performed by pushing the LEARN BUTTON (LRN).

- Before the learning procedure starts, make sure that the door has been properly closed i.e., not by force.
- A new learn must be carried out in following situations
- If any of the parameters SPRING PRE-TENSION, CLOSING TORQUE (CLTQ) and LOCK RELEASE (DIP-switch No. 3 on EXU-SI) are changed after performing a learn.
- If any of the arm system DIP-switches are changed.
- If any changing of the MAT-dip.
- When replacing any of the extension units.
- When changing of Locked with/without power.
- When changing of Lock 12/24 V.
- Learn can be carried out with activation units and locks connected.
- The back-check will be automatically adjusted to 10° and 1 second before open position. The latch-check will be automatically adjusted to 10° and 1.5 seconds before closed position.

13.2.1 Push the LEARN BUTTON (LRN)

Remain clear of swing path of door, as door may open and close rapidly. The door has no safety during auto-learn cycle.

When the learn button is pressed the status LED starts to blink and will not stop until learn is concluded.

Note: Do not touch the door during the auto-learn cycle.
The learn cycle starts with sensor detection, during which the door will stand still. When the door starts moving the spring tension and door inertia are measured and the door open and close position is saved. When the learn is concluded the back-check, latch-check, opening time and closing time are calculated. The changed settings affect the behavior of the installation and must be verified.

13.2.2 Double doors

For double doors, the MASTER door must be learned first and thereafter the SLAVE door. When the SLAVE door is learned, the MASTER door will open up to fully open position during the learning phase of the SLAVE door.
The doors can also be learned separately before connecting the sync cable. In case of astragal doors and separate learning, the MASTER door must be held open before the SLAVE door learn is carried out.

13.3 General adjustment

a Set the hold open time with the potentiometer on the control unit.
b Adjust the opening speed (OPSP) to comply with ANSI A156.19. Turning clockwise increases the speed (see Table I on page 72).
c Adjust the closing speed (CLSP) to comply with ANSI A156.19. Turning counter- clockwise decreases the speed (see Table I on page 72).
d Connect the required activation units.
e Check that the installation complies with AHJ (Authority Having Jurisdiction).

13.4 Connection of activation units and accessories

(1) Inner impulse
(2) Outer impulse
(3) Key impulse
(4) Presence impulse
(5) Presence detection
(6) Off
(7) Kill impulse

* Standard

A Red
B Black
C White
D Green
E Brown
F Blue
G Yellow
H Purple
I Grey
J Orange

Note: According to local standard UL325 56 2.2, push plates shall be visible from the door.

14 Changing group of parameters

a Disconnect the electrical power contact.
b Press the LEARN BUTTON (LRN) and keep it depressed.
c Connect the electrical power contact.
d Watch the ERROR LED.

e Release the LEARN BUTTON after the 5 seconds (LED is out).
The ERROR LED flashes a number of short flashes that corresponds to the parameter group number (see table). After a short pause the LED will repeat the group number, and so on.
f Pushing the LEARN BUTTON once, increases the parameter group number. When the highest parameter group number is reached it will start with number 1 (default) again.
g Push the button until you get the requested parameter group.
h Disconnect the electrical power contact.
i Next time the electrical power is connected, the operator will use the new group of parameters.

Parameter/Group	1 (default)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
OPEN/CLOSE HOLD OPEN TIME	15 minutes	Infinite	15 minutes	Infinite	Infinite											
KILL mode	Locked during KILL	Locked during KILL	Locked during KILL	Lock follows program selector during KILL	Locked during KILL	Locked during KILL	Locked during KILL	Locked during KILL	Lock follows program selector during KILL*	Locked during KILL	Unocked during KILL	Unocked during KILL	Locked during KILL	Unocked during KILL	$\begin{aligned} & \text { Locked } \\ & \text { during } \\ & \text { KIII } \end{aligned}$ KILL	$\begin{array}{\|l} \hline \text { Locked } \\ \text { during } \\ \text { KILL } \end{array}$
OBSTRUCTION mode ${ }^{1)}$	Door closer	Door closer	Door closer	Door closer	Reverses when obstructed	Door closer	Door closer	Door closer	Door closer	Reverses when obstruct- ed	Door closer	Door closer	Door closer	Door closer	Reverses when obstructed	Reverses when obstructed
DOUBLE EGRESS mode	Separate presence detection	Separate presence detection	Separate presence detection	Separate pres ence detection	Separate presence detection	Common presence detection**	Separate presence detection	Separate presence detection	Separate pres ence detection	Separate presence detection						
LOCK RETRY	On	On	On	On	On	On	Off	On								
OPEN/CLOSE impulse	In AUTO mode	In OFF, EXIT and AUTO mode	In AUTO mode													
KILL Impulse Configuration	Normally Open	$\begin{aligned} & \text { Normally } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { Normally } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { Normally } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { Normally } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { Normally } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { Normally } \\ & \text { Open } \end{aligned}$	Normally Open	Normally Closed Monitored	$\begin{aligned} & \text { Normally } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { Normally } \\ & \text { Open } \end{aligned}$	Normally Closed Monitored	Normally Closed Monitored	Normally Closed Monitored	Normally Open	Normally Closed Monitored
Relay	Error indication	Error indica- tion	$\begin{aligned} & \text { Error indica- } \\ & \text { tion } \end{aligned}$	KILLout	KILLout	KILLout	Lock	Convenience	Conve- nience							
* The lock unlocks at impulse during KILL in EXIT mode. ** Please consider that use of Push And Go together with Common presence detection may cause stop in traffic flow. ${ }^{1)}$ If set to REVERSES WHEN OBSTRUCTED, the operator re-opens when obstructed, similar to a presence impulse. In the default setting, if there is a bind with the strike plate when the door is closing the door will try to close two extra times in automatic operation, OFF or EXI operation. This function can be switched off (see "Lock retry" above). Note: When changing group of parameters, normally only the master control must be configured in a double door application. When changing from or to group must be configured.																

14.1 Learn with advanced setting of "back- and latch-check"

See the prerequisites for performing a "learn" under the heading "Auto-learn - automatically sets back and latch check (recommended)" on page 58.
a Push the button once or twice as for auto-setting.
b Stop the door at the fully open position.
c The door reverts towards closed position.
d Stop the door at required latch-check.
e The door reverts to the open position.
f Stop the door at the required back check.
g Remove the stop.
h The door reverts to closed position.

14.2 Revert to default values for "back- and latch-check"

a Disconnect the electrical power contact.
b Press the LEARN BUTTON and keep it depressed.
c Connect the electrical power contact.
d Watch the ERROR LED.

e Release the LEARN BUTTON after 3 seconds (LED is out).
f The BACK CHECK, LATCH CHECK and OPEN POSITION have now reverted to default values.
g Disconnect the electrical power contact.
h Next time the electrical power is connected, the operator will use the default values.

14.3 Reducing / Increasing the "Spring pre-tension" (SPTE)

The spring pre-tension is factory set to $\mathbf{3 6 0}{ }^{\circ}$ and is normally not necessary to adjust. If adjustment has to be carried out, the electrical power must be switched on during spring pretention and learn, see below.

Make sure the potentiometers "Extended closing torque" (CLTQ) and "Power assist" (POAS) are set to 0°.
a Loosen the door stop arm. Remove if fitted on the topside, slide down if fitted on the bottom.
b Turn the potentiometer for spring pre-tension (SPTE) clockwise until the door opens to 45°.
c Loosen the drive arm fixing screw.
d Moving the door towards open position, reduces the tension, or:
Moving the door towards closed position, increases the tension.
e Tighten the drive arm.
f Turn the potentiometer SPTE to 0°.
g Open the door to required open position, plus approx. $15 \mathrm{~mm}\left(5 / 8^{\prime \prime}\right)$, by turning the potentiometer SPTE clockwise.
h Mount the door stop arm as close as possible to the open door stop block, fine- adjust with the screw if necessary.
i Turn the potentiometer SPTE to 0°.
j Push the LEARN BUTTON.
k Let the door do the learn cycle without touching it.
Note: Max. allowable spring pre-tension is 720°. Over-tension may damage the spring or overheat the motor.

15 Classification

15.1 Entering the program mode (classification)

On the master control unit.

- Disconnect the mains plug
- Press the LEARN BUTTON while connecting the mains plug
- Watch the ERROR LED

- Release the LEARN BUTTON after the second 5 s has passed

15.2 Identify the current classification

The ERROR LED flashes an amount of short flashes that correspond to the classification number.

After a short pause the LED will repeated the classification number and so on.

15.3 Changing the classification

If you push the LEARN BUTTON once, the classification number will increase. When you have reached the highest classification number it will start at number one again.

- Push the button until you get the requested classification
- Disconnect the mains plug

Next time you connect the mains the operator will use the new classification.

15.4 Classification table

Classification	$\mathbf{1}$	$\mathbf{2}$
	Full power	Low energy (Default)
Standard	ANSI 156.10	ANSI 156.19 (and DIN 18650-2)
Opening speed	$2-12 \mathrm{~s}$	Automatic limitation, 3-12 s
Closing speed	$4-12 \mathrm{~s}$	Automatic limitation, 4-12 s

The fastest setting of Opening Speed and Closing Speed are automatically limited to the value in the table, and can only be reduced.

If the Low Energy classification is used the operator will automatically follow the speed limitation in ANSI 156.19 (and DIN 18650-2).

The learn procedure must be carried out after a change of the classification setting.
Speed settings according to Table I in ANSI / BHMA A156.19 (LOW ENERGY APPLICATION)

16 Cover

The cover and back plate are manufactured in clear anodized aluminium. The end plates are made of black painted steel sheet.

16.1 Creating slot in the cover for the drive shaft

a Measure the distance X on the mounted operator from the pivot end of the back plate to the center line of the output shaft.
b Use a 1 " $(31,75 \mathrm{~mm})$ hole saw to cut the round hole for the output shaft.
c Use a hack saw to make two straight cuts.

16.2 Fitting and removing the cover

The cover is slid over flanges in the back plate so that the ridges fit in the grooves. Snap on the fill cover into the slot for output shaft. Secure cover with screws.
Apply the Besam logotype to the cover - see below.
Apply the label to the underside of the cover - see below.

17 ANSI / BHMA A156.10

17.1 REQUIREMENTS FOR POWER OPERATED DOORS

From American National Standard for Power-Operated Pedestrian Doors. Please refer to the full standard if necessary, obtainable through BHMA at (212) 661-4261. All figures referred to below can be found in the full standard. Excerpts reprinted with BHMA permission.

17.1.1 Swinging Doors

Automatic Swing Doors have a variety of configurations, including:

- A single door swinging in or out, left-handed or right handed
- A pair of doors simultaneously swinging in the same direction
- A pair of doors simultaneously swinging in opposite directions (double egress)

The door operator is concealed or surface applied. The doors are center pivoted, offset hung, balanced or butt hinged. No matter what the configuration or system, automatic swinging doors shall include guide rails, sensors or control mats and signage for the safety and convenience of the user.

6. Guide Rails

6.1.1 Two guide rails shall be installed on the swing side of each door. Single doors shall have one on each side of the door and pairs or double egress shall have one rail on each hinge side. Rails shall project to the leading edge of the widest door in the open position.

Exception \#1: A wall or separator is permitted to be used in place of a rail, provided that it meets the criteria in 6.2.1 through 6.1.5

Exception \#2: Guide rails for swing doors serving both egress and ingress shall project out from the face of the door jambs on the swing side to no less than the outside leading edge of the open door plus 55 in .

Exception \#3: If double egress doors or a pair of doors is installed in a hallway, no guide rails are required if the distance between the wall and the door in the 90 degree open position does not exceed 10 in.

Exception \#4: Guide rails for Knowing Act swinging doors serving both egress and ingress shall project out from the face of the doorjambs on the swing side to no less than the outside leading edge of the open door plus 12 in .
6.1.2 A guide rail shall be 30 in . high minimum measured from the floor surface.
6.1.3 A guide rail shall have a panel or divider to inhibit access to the protected area.
6.1.4 There shall be 6 in. minimum clearance between the rail and the door in the fully open position or between the rail and the leading edge of the door at the point in its arc of travel when it is closest to the rail. There shall be a 2 in . minimum clearance between the rail at the hinge side and the door in the fully open position.
6.1.5 Free standing guide rails shall have a maximum dimension between the rail and the jamb (or other adjacent surfaces) of 6 in.

For control mat adjustments, see full standard.

8. Sensors

8.1 General Requirements for Sensors

8.1.1 Activating zones for swinging, sliding and folding doors shall have a minimum width equal to the width of the clear opening measured at 8 in . and 30 in . perpendicular from the face
of the closed door(s). The length from the face of the door shall be 43 in . minimum measured at the center of the clear opening. Detection shall be effective to within 5 in . from the face of the door measured at the center of the clear opening. Exception: If the 43" activating zone length is not practical due to physical or environmental conditions, it shall be permissible to be reduced to 30 inches, along with an additional sign, visible from the side the zone has been reduced on, stating "AUTOMATIC CAUTION DOOR" as described in 11.2.3.
8.1.2 Motion sensors shall detect a 28 in . minimum high person, moving at a rate of 6 in. per second minimum toward the center of the door within the detection zone described.
8.1.3 Presence sensors shall detect a stationary 28 in. minimum high person within the detection areas described for a minimum of 30 sec .

8.2 Swinging Doors

8.2.1 Swinging doors shall have an activating zone as described in 8.1.1.
8.2.2 A safety zone shall be provided on the swing side of all power operated swinging doors.
8.2.2.1 If an overhead presence sensor(s) is used to provide a safety zone, the length of the active area shall be effective to within 5 in . of the face of the closed door measured at the center of the door opening. The safety zone shall extend 5 in . minimum beyond the leading edge of the door in the open position when measured at the center of the door opening. The width of the active area measured perpendicular from the face of the closed door shall be the door opening less 5 in . maXcimum measuring both sides for a total of lOin. maXcimum measured parallel to the face of the door at a distance of 8 in . and 30 in . When the safety zone is occupied by a 28 in. minimum high person fully in the safety zone of a fully open or closed door, the door operator shall not operate.
8.2.2.2 When an overhead presence sensor on the swing side is prevented from providing a safety signal to the control during the closing cycle, an additional sensor, sensors, or photo beam shall be used on the swing side to

1) stop the door, or
2) continue to close the door, or
3) slow the reopening door to a maximum latch edge speed of 4 in . per second measured within 1 in . of the latch edge before any contact is made.
8.2.2.2.1 When using a photo beam, the detection width shall be not less than the clear opening; the beam shall be located between 6 and 28 in . above the finish floor, and not more than 8 in . from the lead edge of the door panel in the full open position.
8.2.2.2.2 When using a door mounted presence sensor, the detection area shall be effective to within 5 in . from the face of the door, for one half of the width of the door, and to within 1 in . of the lead edge, and shall detect a 28 in . minimum high person fully in the defined area.
8.2.2.3 If a door mounted presence sensor is used to provide a safety zone, it shall be effective to within 5 in . from the face of the door for the width of the door less 5 in from the pivot point and to within 1 in . of the lead edge. A door mounted sensor on either side of the door shall detect a 28 in. minimum high person fully in the swing path, during the opening or closing cycle and shall cause the door to reverse direction, stop or slow down to a maximum latch edge speed of 4 inches per second measured within 1 in . of the latch edge before any contact is made.
8.2.3 Swinging doors serving both egress and ingress, including non-knowing act double egress doors, shall have on the swing side, a safety zone as defined in 8.2.2, and an activating zone. The length of the activating zone shall be established as follows: the activating zone starts adjacent to the safety zone and extending an additional 55 in . from the leading edge of the door in the open position. The activating zone shall have a minimum width equal to the width of the clear opening measured at 8 in . and 30 in . from the interlace of the safety and activating zones.
8.2.5 When sensors are used to provide both an activating and a safety zone, if the distance between the two non overlapping zones exceeds 8 in. the door system shall:
4) be equipped with a safety control mat; or
5) be equipped with a presence sensor across the door opening; or
6) have a door closing cycle delay of 4 seconds minimum after the activating zone is clear; or
7) be equipped with a door mounted presence sensor on the non swing side as described in 8.2.2.3.

For knowing Act and double egress doors, see full standard Section 9.

10. Entrapment Protection

10.2 Swinging Doors

10.2.1 The opening time of a swing door to 80 degrees shall not be less than 1.5 seconds
10.2.2 The force required to prevent a stopped power operated swinging door in the last 10 degrees of opening from moving in the direction of opening shall not exceed $30 \mathrm{lbf}(133 \mathrm{~N})$ measured 1 in . from the lock edge of the door.
10.2.3 Back check shall occur at no less than 10 degrees of the full open position.
10.2.4 Swing doors utilizing sensors or control mats shall remain open a minimum of 1.5 seconds after loss of detection unless otherwise specified in this standard.
10.2.5 A swing door shall be adjusted so that the closing times to latch shall be the minimum values in the following table:

Inches (mm)	Lbs. (kg)	Time
(D)	(W)	T (secs.)
$36(914) \&$ under	to $100(45)$	2.0
$36(914)$	to $140(64)$	2.3
$42(1067)$	to $110(50)$	2.3
$42(1067)$	to $150(68)$	2.7
$48(1219)$	to $120(55)$	2.8
$48(1219)$	to $160(73)$	3.2

For doors of other weights and widths:
$\mathrm{T}=\mathrm{D} \sqrt{ } \mathrm{W} / 188$ where:
$\mathrm{W}=\mathrm{Weight}$ of door in pounds
$\mathrm{D}=$ Width of door in inches
$\mathrm{T}=$ Closing time to latch check in seconds
10.2.6 Latch Check shall occur for swinging doors at no less than 10 degrees from closed position and the door shall not close through the final 10 degrees in less than 1.5 seconds.
10.2.7 The force required to prevent a stopped power operated swinging door from moving in the direction of closing shall not exceed a $30 \mathrm{lbf}(133 \mathrm{~N})$ measured 1 in . from the lock edge of the door at any point in the closing cycle.
10.2.8 In the event of power failure, a swing door shall be capable of being opened manually with no greater than a $30 \mathrm{lbf}(133 \mathrm{~N})$, applied 1 in . from the edge of the lock stile to open.
10.2.9 Swinging doors provided with a break away device shall require no more than 50 lbf $(222 \mathrm{~N})$ applied 1 in . from the edge of the locks tile to open. When the door(s) is opened in the break out mode, powered operating components excluding spring power shall not operate the doors.
10.2.10 The opening at hinge side of swinging door shall be: a) Less than $1 / 4 \mathrm{in}$. wide with the door in any position, or b) At least $3 / 4 \mathrm{in}$. wide with the door in any position. A door that does not comply with the above is acceptable if provided with a finger guard.

11. Signage

Consistent with section 2.2.2 of ANSI Z535.4 the "signage and warnings" guidelines of A156.10 are recognized, industry specific standards that predate the adoption of Z535.4 and are not replaced by the standards set forth therein.
11.1 All Swinging, sliding and folding doors shall be equipped with signage visible from both sides reading "AUTOMATIC DOOR" with letters $1 / 2 \mathrm{in}$. high minimum. The sign described in figures $B-1, B-3$, and $B-5$ shall be permitted to be used to satisfy this requirement.
11.2.1 An arrow sign shall be visible from the approach side of a swinging door mounted on the door at a height of $58^{\prime \prime}+5 \mathrm{in}$. from the floor to the center line of the sign. The sign shall be a minimum of 6 in . in diameter, having a green circle surrounding a black arrow on a white background.

11.2.2 An International "DO NOT ENTER" sign shall be visible from the side of doors that swings towards pedestrians attempting to travel in the wrong direction mounted on the door at a height $58^{\prime \prime}+5 \mathrm{in}$. from the floor to the center line of the sign. The sign shall be a minimum of 6 in. in diameter, having a red circle with the wording, "DO NOT ENTER", in the red circle.

11.2.3 Swinging doors serving both egress and ingress shall be marked with a decal visible from the swing side of the door, "AUTOMATIC CAUTION DOOR". The sign shall be mounted on the door at a height $58 "+5$ in. from the floor to the center line of the sign. The sign shall be a minimum of 6 in . in diameter and with black lettering on a yellow background.

18 ANSI / BHMA A156.19 (LOW ENERGY APPLICATION)

18.1 REQUIREMENTS FOR POWER OPERATED DOORS

The following texts are excerpts from American National Standard for power-operated doors. Please refer to the full standard if necessary.

18.1.1 Activation

The operator shall be activated by a knowing act.
18.1.2 Opening

Doors shall open from closed to back check, or 80 degrees which ever occurs first, in 3 seconds or longer as required in Table I. Backcheck shall not occur before 60 degrees opening. Total opening time to 90 degrees shall be as in Table II. If the door opens more than 90 degrees, it shall continue at the same rate as backcheck speed. When powered open, the door shall remain at the open position for not less than 5 seconds.

18.1.3 Closing

Doors shall close from 90 degrees to 10 degrees in 3 seconds or longer as required in Table I. Doors shall close from 10 degrees to fully closed in not less than 1.5 seconds.

18.1.4 Force and Kinetic Energy

The force required to prevent a stopped door from opening or closing shall not exceed 15 lbf $(67 \mathrm{~N})$ measured 1 in (25 mm) from the latch edge of the door at any point during opening or closing.
The kinetic energy of a door in motion shall not exceed $1.25 \mathrm{lbf}-\mathrm{ft}(1.69 \mathrm{Nm}$). Table I provides minimum times for various widths and weights of doors for obtaining results complying with this kinetic energy.
Doors shall open with a manual force not to exceed $15 \mathrm{lbf}(67 \mathrm{~N})$ to release a latch, if equipped with a latch, $30 \mathrm{lbf}(133 \mathrm{~N})$ to set the door in motion, and $15 \mathrm{lbf}(67 \mathrm{~N})$ to fully open the door. The forces shall be applied at $1^{\prime \prime}(25 \mathrm{~mm})$ from the latch edge of the door.

Table I

Minimum Opening Time to Back Check or 80 degrees, which ever occurs first, and the Minimum Closing Time from 90 degrees to Latch Check or 10 degrees.

"D" Door Leaf Width - Inches $(\mathbf{m m})$	"W" Door Weight in Pounds (kg)				
	$100(45.4)$	$125(56.7)$	$150(68.0)$	$175(79.4)$	$200(90.7)$
$* 30(762)$	3.0	3.0	3.0	3.0	3.5
$36(914)$	3.0	3.5	3.5	4.0	4.0
$42(1067)$	3.5	4.0	4.0	4.5	4.5
$48(1219)$	4.0	4.5	4.5	5.0	5.5

[^1]
Table II

Total Opening Time to 90 Degrees

Backcheck at 60 degrees	Backcheck at 70 degrees	Backcheck at 80 degrees
Table I plus 2 seconds	Table I plus 1.5 seconds	Table I plus 1second
If the door opens more than 90 degrees, it shall continue at the same rate as backcheck speed.		

Note: To determine maximum times from close to full open, the operator shall be adjusted as shown in the chart. Back check occurring at a point between positions in Table II shall use the lowest setting. For example, if the backcheck occurs at 75 degrees, the full open shall be the time shown in Table I plus 1.5 seconds.

18.1.5 Signage

Doors shall be equipped with signage visible from either side, instructing the user as to the operation and function of the door. The signs shall be mounted $50^{\prime \prime}+/-12^{\prime \prime}(1270 \mathrm{~mm}+/-305 \mathrm{~mm})$ from the floor to the center line of the sign.
The letters shall be $5 / 8$ inch (16 mm) high minimum.
Doors All doors shall be marked with signage visible from both sides of the door, with the words "AUTOMATIC CAUTION DOOR" (see illustration below). The sign shall be a minimum of 6 inches $(152 \mathrm{~mm})$ in diameter with black lettering on a yellow background. Additional information may be included.

Additionally one of the following knowing act signs shall be applied:
When a Knowing Act Switch is used to initiate the operation of the door operator, the doors shall be provided with signs on both sides of the door with the message "ACTIVATE SWITCH TO OPERATE". The lettering shall be white and the background shall be blue.
When push/pull is used to initiate the operation of the door operator, the doors shall be provided with the message "PUSH TO OPERATE" on the push side of the door and "PULL TO OPERATE" on the pull side of the door. The lettering shall be white and the background shall be blue.

19 Troubleshooting

Fault	Possible reasons why	Remedies/Explanations
The door does not open The motor does not start	Control switch is set to OFF	Change the setting of the control switch
	Electrical power power is missing	Check the electrical power power switch
	Activation unit does not function	Strap impulse inputs
	Presence detection is activated	Check that there are no objects in the detection zone
	KILL activated	Deactivate KILL
	Potentiometer SPTE not turned to 0°	Turn SPTE to 0°
The motor starts	Mechanical lock is locked	Unlock the lock
	Something jammed beneath the door	Remove object
	Electric striking plate is binding	Select lock release
		Adjust striking
	Arm system has come loose	Turn potentiometer SPTE until the door-stop hits the stop-block. Put the door in required open position. Tighten the arm system. Turn SPTE to 0°
The door does not close	Control switch is set to HOLD	Change the setting of the ON/OFF/HOLD open switch
	Presence impulse is activated	Remove objects in the detection zone
	Something jammed beneath the door	Remove object
The operator has unknown spring pre-tension	Too many adjustments carried out	a Turn up the potentiometer SPTE until it is possible to loosen the door arm stop b Remove the door stop and the arm system c Unplug the electrical power and let spring close d Unplug the motor plug e Mount the drive arm from the arm system and find the 0 pre-tension by moving back and forth f Loosen the arm g Connect the motor plug h * Turn the SPTE pot to 180° and wait until the spindle stops turning i Connect the electrical power. The operator will now tension the spring to factory set 720° j Mount the door stop against the closing stop block k Turn down SPTE to 0° - operator is now factory set 1 Turn to section 12 to adjust open stop position

* Adjusting the SPTE before power up increase the SPTE range 4 times i.e. 180° on the SPTE will tension the spring 2 turns $=720^{\circ}$. Adjusting to zero during power on will reset range of SPTE.

19.1 Error indication

- During normal operation the ERROR LED on the control unit is illuminated.
- An extinguished LED indicates that there is no electrical power power.
- A flashing light on the LED indicates that the operator is out of function (see table below).
- An audible warning signal can be achieved by using the accessory board AIU. It is connected to the 24 VDC and plugged into the EXU-SA relay output terminal.

LED flash frequency	Reason	Remedy
One 0.3 s flash, 10 s pause etc.	Kill impulse is active	Make a kill reset, reset kill switch or reset fire alarm
One 0.3 s flash, 2 s pause etc.	+24 V DC external error or sensor monitoring error	Check for short circuit or broken monitored sensor
Three 0.3 s flashes, pause etc.	Control unit defective	Replace control unit
Four 0.3 s flashes, pause etc.	Encoder error	Check the encoder cable. Open and close the door manually and thereafter check the automatic function. If the operator is still out of function replace the drive unit.
Five 0.3 s flashes, pause etc.	Locking device defective	Check for e.g. short circuit in the locking device
		Replace locking device
	EXU-SI board defective	Replace EXU-SI board
Six 0.3 s flashes, pause etc.	Sync cable not connected or defective (double door only)	Connect the sync cable
		Replace the sync cable
Seven 0.3 s flashes, pause etc.	SLAVE control unit defective (double door only)	Check the flash frequency on the SLAVE LED and take necessary measures in accordance with this table.
Eight 0.3 s flashes, pause etc.	Motor overheated	Wait for the motor to cool down
Nine 0.3 s flashes, pause etc.	Blocked door and constant impulse.	Toggle impulse
Ten flashes	Settings have been made that requires a new learn or the learn has failed.	Check set up. Make a new learn.

11 flashes means breakout active

20 Maintenance plan

Regular inspections shall be made according to national regulations by a trained and qualified person. The number of service occasions shall be in accordance with national requirements. This is especially important when the installation concerns a fire-approved door or a door with an emergency opening function. Refer to Besam Pro-Active Care option services to learn more about service possibilities!
As with all other technical products, an automatic door needs maintenance and service. It is essential to know the importance of maintenance to have a reliable and safe product.
Service and adjustments will ensure a safe and proper operation of an automatic door unit.
The table below shows the recommended interval, in months, when to replace parts during preventive maintenance.

Part	Part number	Cycles/hour in operation		Abusive	
		$<\mathbf{1 0}$	$<\mathbf{1 0 0}$		Environ- ment
		Low traffic	Medium traffic	High traffic	
PUSH arm service kit	330000271 SI/BK	24	12	6	6
PULL arm service kit	330000272 SI/BK	24	12	6	6
Stop arm kit	330000276	24	12	6	6
Micro switch kit	330000275	24	12	6	6
Adaptor kit	330000270	24	12	6	6
Transmission unit	331007291	60	60	60	60
Connection box kit	331007504	60	60	60	60
CU-200 control unit	331007752	60	60	60	60
EXU-SA	1003557	60	60	60	60
EXU-SI	1003306	60	60	60	60

Australia:

Besam Australia Pty Ltd.,
235 Huntingdale Road,
Oakleigh Victoria,
Australia 3166
Tel: +61 1300131310
Fax: +61 385743865
admin@besamaustralia.com

Austria:

Besam Austria GmbH,
Hütteldorferstraße 216c,
1140 Wien
Tel: +43 191455370
Fax: +43 19149298
vertrieb@besam.at

Belgium:

Besam Belgium NV,
Centrum-Zuid 3042
3530 Houthalen
Tel: +32 11609500
Fax: +32 11604680
info@besam.be

Canada:

Besam Canada, Inc.,
4090 Ridgeway Dr. Unit \#16,
Mississauga, Ontario
L5L 5X5 Canada
Tel: 9056089242
Fax: 9056081151
general@besam.ca

China:

Besam Automatic Door Systems Trading
Shanghai) Co. Ltd.,
Suite 1903,
Modern Communication
Commercial Tower
218, Hengfeng Road,
Shanghai, PRC 200070
Tel: +86 2151288909
Fax: +86 2151288919
info@besam.com.cn

Czech Republic

Besam spol. s r.o.,
Košarova 23,
19700 Praha - Kbely
Tel: +420 286001560
Fax: +420 286001570
besam@besam.cz

Denmark:

Besam A/S,
Marielundvej 20,
2730 Herlev
Tel: 44537080
Fax: 44532022
besam@besam.dk

Finland:

Besam OY,
Agronominraitti 2,
00790 Helsink
Tel: +358 972885400
Fax: +3589799292
besam@besam.fi

France:

Besam S.A.S,
10 Rond Point du Général de Gaulle, 94864 Bonneuil s/Marne Cedex
Tel: +33 143775566
Fax: +33143395600
besam@besam.fr

Germany:
Besam GmbH
Lagerstraße 45 ,
64807 Dieburg
Tel: +49 60712080
Fax: +49 6071208111
info@besam.de

Hungary:

Besam Kft.,
Nagytétényi út 112
1222 Budapest
Tel: +36 14247274
Fax: +36 12261949
besam@besam.hu
Italy:
Besam S.p.A.,
Via Monzoro 142,
20010 S
Pietro all'Olmo (MI)
Tel: +39 0293611311
Fax: +39 029362116
besamsales@besam.it

Netherlands:

Besam Nederland BV,
Postbus 8155
6710 AD Ede
Tel: +31 318698969
Fax: +31 318638346
info@besam.nl

New Zealand:

Doorman Besam Ltd.,
10 Haultain St.,
PD Box 15784 New Lynn,
Auchland 1232
Tel: +64 (0)9 8158392
Fax: +64 (0)9 8158391
admin@doormanbesam.co.nz

Northern Ireland:

Tel: +44 (0) 2871268011
Fax: +44 (0) 2871271115 info@besam .co.uk

Norway:

Besam Norge AS, Brobekkveien 80
Postboks 25 Tveita
0617 Oslo, Norway
Tel.: +47 69245300
Fax: +47 69245350
info@besam.no

Poland:

Besam Polska Sp. z.o.o.
ul. J. Olbrachta 94
PL-01-102 Warszawa
Tel: +48 223318680
Fax: +48 223318681
biuro@besam.com.pl

Portugal:

Besam Portugal,
Av. Marechal Gomes da Costa,
Fracção AD, 1° Piso, Cabo Ruivo
1800-255 Lisboa
Tel: +351 212969290
Fax: +351 212974132
apoiocliente@besam.com

Republic of Ireland:
Besam Ltd,
unit 39, Navan Enterprise Centre,
Trim Road
Navan, Co. Meath
Tel: +353 4676747
Fax: +353 4676745
info@besam.co.uk

Russia:

Besam Export AB (Russian office)
Box 120, Ovchinnikovskaya nab. 22/24, building 1
Moscow 115035 Russia
Tel: +7 4955429725
Fax: +74955429725
info@besam.ru

Singapore:

Besam (Mfg) Pte Ltd.,
No 33 Ubi Ave. 3 \#03-52 Vertex
Singapore 408868
Tel: +65 67456228
Fax: +65 67457322
info@besam.com.sg
Slovak Republic:
Besam, spol. s.r.o.,
Kapitulska 15 ,
81101 Bratislava
Tel: +421 254431045
Fax: +421 254431247
besam@besam.sk

Spain:

Besam Ibérica S.A.,
Sepúlveda, 7A
28108 Alcobendas (Madrid)
Tel: +34 916574860
Fax: +34916614380
informacion@besam.es

Sweden:

Besam Sverige AB,
Box 353
26123 Landskrona, Sweden
Tel: +46 41851000
Fax: +46 41814060
swsales@besam.se
Besam Export AB
Box 669,
26125 Landskrona
Tel: +46 41851400
Fax: +46 41851355
export@besam.se

United Kingdom:

Besam Ltd.,
Washington House,
Brooklands Close,
Sunbury on Thames,
Middlesex TW16 7EQ
Tel: +44 1932765888
Fax: +44 1932765864
info@besam.co.uk

US:

Besam US Inc.,
1900 Airport Road
Monroe, NC 28110
Tel: +1 7042905520
Fax: +1 7042905555
marketing@besam-usa.com

besam

ASSA ABLOY

Besam US Inc., 1900 Airport Road, US-Monroe, NC 28110
Tel: (704) 2905520 • Fax: (704) 2905544
Tel: (877) 2372687 (service) • Tel: (866) 2372687 (sale)
marketing@besam-usa.com•www.besam.com

[^0]: ${ }^{1)}$ If not used strap to "Ground".
 ${ }^{2)}$ Remove strapping from terminals 2 and/or 3 .

[^1]: * Check applicable Building Codes for clear width requirements in Means of Egress.

