Setup Instructions \& Troubleshooting

C3150 Microprocessor Control V15.00

Use with G200, G2001, G230, G230T, G205 or G20B Installation Instructions.

Table of Contents

LINEAR DRIVES
Section01. SLIDE OPERATOR QUICK-STARTC3150 Control for Series 2000 Linear Drives.. H310. 01and S2000B, S20001 and S2003 Belt Drive Operators.
02. C3150 Control Initialization
Step 1: Power-Up H310.02
Step 2: Learn Cycle H310.02
Step 3: Checking Door Cycle. H310.04
03. Adjusting Parameters
Step 1: Changing Parameter Settings H310.06
Step 2: Saving Parameter Settings H310.07
04. Adjustable Preset Parameters
Step 1: List ‘Tech’ Parameter Settings H310.07
05. Actuation Features
Refer to Section 14 - 'Step 1: Setting Control Operating Modes' H310.18
06. If Failed Autolock Setup
Step 1: Autolock Setup and Functions. H310.08
07. Setting Lock Parameters
Refer to Section 16 - 'Step 1: Lock Parameter Verification’ H310.20
08. Lock Error Codes
Refer to Section 17 - 'Step 1: Lock Diagnostics' H310.21
09. Autolock Test Points
Step 1: Monitored Autolocks H310.10
10. Microswitches
Step 1: Microswitch Wiring H310.11
Step 2: Partial-Open Switch Wiring. H310.11
BELT DRIVES
Section Sheet
11. C3150 Initialization
Step 1: Power-Up H310.12
Step 2: Learn Cycle H310.12
Step 3: Checking Door Cycle H310.14
12. Adjusting Parameters
Step 1: Changing Parameter Settings H310.16
Step 2: Saving Parameter Settings H310.17
13. Adjustable Preset Parameters
Step 1: List ‘Tech’ Parameter Settings H310.17
14. Actuation Features
Step 1: Setting Control Operating Modes H310.18
15. Autolock Setup and Initialization
Step 1: Autolock Setup and Functions H310.19
16. Setting Lock Parameters
Step 1: Lock Parameter Verification H310.20
17. Lock Error Codes
Step 1: Lock Diagnostics H310.21
18. Autolock Test Points
Step 1: Monitored Autolocks H310.22

Table of Contents

LINEAR AND BELT DRIVES
Section Sheet
19. Diagnostics
Step 1: Entering Diagnostic Menu H310.23
D01: Multifunction Test H310.23
A. Navigating thru Functions H310.23
B. Motor and Encoder Test - Belt Drive Units H310.24
C. Fail-Secure Lock Test - Belt Drive Units H310.24
D. Fail-Safe Lock Test - Belt Drive Units H310.25
E. Motor and Microswitch Test - Linear Drive Units H310.25
F. Fail-Secure Lock Test - Linear Drive Units H310.27
G. Fail-Safe Lock Test - Linear Drive Units H310.28
D02: Show Supply Voltages H310.29
D03: Read Counters H310.29
D04: Read Log H310.30
D05: Clear Cycle Counter H310.30
D06: Clear Log H310.31
D07: Zero Stroke H310.31
D08: Rholix Block H310.32
20. Appendix
A - Troubleshooting the C3150 Control V15.00.00 H310.33
B - Status Messages - C3150 Control V15.00.00 H310.37
C - Shortcuts - C3150 Control V15.00.00 H310.42
D - Motor Test - C3150 Control V15.00.00 H310.43
E - OPTEX OS12-CT - Photoelectric Safety Beam and Amplifier System H310.44
21. Wiring Diagrams
Linear Drives
Diagram 1: C3150 Control with Actuating and Switch Connections H310.45
Belt Drives
Diagram 2: C3150 Control with Actuating and Switch Connections H310.46

01. SLIDE OPERATOR - CONTROL HARNESS DETAIL

C3150 Control for Series 2000 Linear Drives and S2000B, S20001 and S2003 Belt Drive Operators

Instructions to Installer

\square The Horton C3150 Control Assembly is designed for use only on the Horton Series 2000, 2000B, 2001, 2003, and 2003T slide door systems.
\square This Microprocessor Control and Slide Door Unit must be installed by a trained and experienced installer with the knowledge of local codes and ANSI A156.10 'Standards for Power Operated Doors'.
\square To ensure safe and proper operation, the door must be installed and adjusted to conform to Horton Automatics recommendations, all code requirements, and ANSI A156.10.
\square It is strongly advised by Horton Automatics to terminate a ground from incoming power at the indicated green fastener located on far right side of the Control Chassis (refer to illustration below).
\square If there are any questions about these instructions, contact Horton Automatics Technical Assistance Team at the phone numbers listed on the back cover.

C03150.1500 Control with Transformer
Attachment Harnesses Detail

From OPTEX OS-12CT Safety Beam
Amplifier to BEAM Input on Control

From Incoming Input
120VAC, $60 \mathrm{~Hz}, 15 \mathrm{Amp}$ Service. Terminate Ground from Incoming Power to
Chassis.

0
Connect to Existing
_ ORMERASSY
C3150.3924 TRANSFORMERASSY
PRI: $0 \mathrm{~V}-120 \mathrm{~V} 0 \mathrm{~V}-240 \mathrm{~V}$
Thermal Sw. $130^{\circ} \mathrm{C} \times 2$ GRN-GRN
SEC: $\begin{aligned} & 0 V-19.4 \mathrm{~V} @ 2.5 A \text { GRN-GRN } \\ & 0 V-90 \mathrm{~V} @ 1 \mathrm{~A} \text { INT: } 60 \% \text { RED-RED }\end{aligned}$

02. C3150 CONTROL INITIALIZATION - LINEAR DRIVE

Step 1: Power-Up

Be sure the toggle circuit is complete before applying AC power to the unit. Caution: The Door will move.

- With power established, Control LED Displays the Door Mode and Type Traffic along with the Elapsed Time since last Reset.
- The Display then shows the Control Version and Date.

Day 2-Way
Od: Oh: Om: Os

Ver 15.00 Build XX
(c) Horton 2017

Setup Request

Select Operator:

 S2000B/S2003 Belt
Select Operator 2000 Linear

\square When the required 2000 Linear Operator is displayed, press the SET button.

Press the UP button to confirm Operator Type.

Press the DOWN button for unmonitored Sensors.
\square Press the UP button if Sensors are connected and will be monitored.
\lrcorner Press the DOWN button to Disable Day/Nite Switch.
\square Press the UP button to Enable Day/Nite Switch.

Setup - Confirm? UP=Yes, DOWN=No

Marker for

Section 6 Only.

Step 2: Learn Cycle Cont:

The Control then searches for a Lock Device connected to the Operator. The Display will show one of the following codes depending on the Lock type connected. In case of difficulty with the lock, refer to Section 06 -
'Linear Drive - If Failed Autolock Setup' on Sheet H310.08.

- Lock Type Codes:

No Lock Detected.

- Fail Secure Lock Recognized.
\qquad
- Fail Safe Lock Recognized.
\longrightarrow

The Control will save the data from the Learn Cycle.

Close Cushion

Close Accelerate Learning Rev Peak

Close Speed Learning Rev Sens

Braking Door Learning Rev Sens

Data Saved

Checking for Lock...

Checking for Lock...
No Lock Detected

Checking for Lock...

 Fail Secure LockChecking for Lock... Fail Safe Lock

- Learning Reversing Peak Current for Close Accelerate.
- Learning Reversing Sensitivity for Closing Speed.
- Learning Reversing Sensitivity for Close Cushion.
- The LED display returns to Initial read-out.
- Learning Reversing Sensitivity for Braking Door.

Close Cushion Learning Rev Sens

Step 2: Learn Cycle Cont:

- Reversing Sensitivity Learning Complete

Rev Learn Complete

Day 2-Way Od: 0h: Om: Os read-out.

Open Accelerate Act (Down)*

The following Cycles are performed automatically by the C3150 Microprocessor Control. Illustrations below show the position of the door panels and the Display readout for each position.
*This demonstration assumes door was opened by the down button.

OPEN CYCLE

*Door actuated by local (Down) Button.

*Braking may override Open Check display.
*Door actuated by local (Down) Button.

Braking Door

Step 3: Checking Door Cycle Cont:

Open Cushion

\square Time Delay

Time Delay 1

CLOSE CYCLE

- The LED display's Initial Close Cycle read-out.

- The LED display returns to Initial read-out.

If there were no problems encountered during the Cycle Check procedure, if there are no parameters to be changed, and an Autolock is set-up, this concludes the C3150 Control's Initialization procedure.

If you are experiencing difficulty with the Control, refer to APPENDIX - A, Sheet H310.33

Close Cushion

Day 2-Way
0d: Oh: Om: Os

Close Check

03. LINEAR DRIVE - ADJUSTING PARAMETERS

Step 1: Changing Parameter Settings

A chart of preset parameter values is shown on the next page. If any speeds or other settings need to be changed, follow the procedure listed below.

Turn the toggle (rocker) switch OFF (Blue LED on Control turns OFF).
\sqcup Or, double-click the SET button.

- 'Door Off' Message blinks once, then P01 display window is shown.
\square The display switches to the menu of adjustable parameters.
- Display window for P01 shown as example for changing the Open Speed.

Refer to Sheet H310.07 for a list of adjustable parameter codes.

- Scroll through the parameter list using the UP and DOWN buttons until the parameter to be changed is found.

EXAMPLE:

\square Hold the SET button and simultaneously press the UP or DOWN button to modify the Speed setting.

- Pressing the UP button changes the Speed Value to 76.

Current Selected Parameter

Increased Speed
Value to 76

Open Speed P01: 76

EXAMPLE:

\square Hold the SET button and simultaneously press the UP or DOWN button to modify the Speed setting.

- The DOWN button was pressed to change the Speed Value back to 75 (Default).
- The DOWN button was pressed a second time to change the Value to 74 (shown).

Open Speed

P01: 74

Step 1: Changing Parameter Settings Cont:

EXAMPLE:

\square When the SET button is released, the display then shows the parameter that was changed along with the new value. Other parameters may be changed, or the toggle switch turned on to check the changes made.

Open Speed P01: 74

- The SET button may be double-clicked to exit the menu (toggle must be on).

Step 2: Saving Parameter Settings

The toggle switch must be on after all adjustments have been made and checked.

Press and hold the SET button until 'Data Saved' is displayed. All changes are now stored in the control's memory. This step must be performed or the control, in the event of a power failure, will revert to the last 'Data Saved' settings.

04. LINEAR DRIVE - ADJUSTABLE PRESET PARAMETERS

Step 1: List 'Tech' Parameter Settings

The Chart below shows all the adjustable parameters. To make changes, follow the procedure in Step 1 outlined on the previous sheet.

NO.	PARAMETER	FACTORY DEFAULT	RANGE	NO.	PARAMETER	FACTORY DEFAULT	RANGE
P01	Open Speed	75	10-97\%	P36	Day/Night Sw Enable	Off	On/Off
P02	Open Check	14	5-31\%	P37	Reduced Open Accel	Off	On/Off
P03	Open Cushion	12	5-31\%	P42	Lock Present	As Learned	On/Off
P05	Close Speed	38	8-56\%	P43	Lock Type Fail Safe	As Learned	On/Off
P06	Close Check	14	5-31\%	P44	Lock Has No Mon Sw	Off	On/Off
P07	Close Cusion	12	5-31\%	P45	Lock in Day Modes	Off	On/Off
P09	Delay 1	2 sec	2-255s	P46	Lock in 1 Way Modes	Off	On/Off
P10	Delay 2	2 sec	2-255s	P47	Resume on Aux 1/2 Clr	Off	On/Off
P11	Close Speed Rev Force	*	40-1000	P58	Remote Mode Enable	Off	On/Off
P12	Close Check Rev Force	**	20-400	P61	Int Sensor Monitored	Off	On/Off
P13	Braking Level	4	1-8	P62	Ext Sensor Monitored	Off	On/Off
P16	Control Password		0-9999	P63	Safety Beam Monitored	Off	On/Off
P34	Cycle Test	Off	On/Off	P64	Aux 1 Snsr Monitored	Off	On/Off
P35	Autoseal	Off	On/Off	P65	Aux 2 Snsr Monitored	Off	On/Off

* 200\% of Learned Max Close Speed Current Units 1/10 Amp.
** 200\% of Learned Max Check Speed Current Units 1/10 Amp.

05. LINEAR DRIVE - ACTUATION FEATURES

Refer to Section 14 - 'BELT DRIVE - ACTUATION FEATURES' on Sheet H310.18.

06. LINEAR DRIVE - IF FAILED AUTOLOCK SETUP

Procede to Section 02: Step 2 'Learn Cycle' for Linear Drive Slide Door Operator on sheets H310.02 thru marker 2 on bottom of sheet.

Fail Secure Lock Installed: D34 Yellow Lock Monitor LED light is OFF.
D38 Orange Lock Monitor light comes ON followed immediately by Lock Monitor light which indicates Fail-Secure Lock detected*.

Checking for Lock... Fail Secure Lock

Fail Safe Lock Installed:

D34 Yellow Lock Monitor LED light is ON which indicates there may be a Fail-Safe Lock connected.
D38 Orange Lock Monitor light comes ON and Yellow Monitor Light immediately goes OFF indicating that a functional Fail-Safe Lock is

Checking for Lock... Fail Safe Lock

No Lock Detected:

D34 Yellow Lock Monitor LED light is OFF. D38 Orange Lock Monitor light comes ON with no change to D34 Yellow Lock Monitor Light indicates a 'No Lock' situation or a malfunction of Lock.
There is a slight delay before the 'No Lock Detected' message appears.

Checking for Lock...

Checking for Lock... No Lock Detected

Step 1: Autolock Setup and Functions Cont:

Fail-Secure Lock The most common type of Autolock.

Fail-Safe Lock Aless common type of Autolock.

C3876 Fail-Secure Autolock Installed in Series 2000 Header.
(Partial Header Section Shown)

07. SETTING LOCK PARAMETERS

Refer to Section 16 - 'STEP 1: Lock Parameter Verification' on Sheet H310.20.

08. LOCK ERROR CODES

Refer to Section 17 - 'STEP 1: Lock Diagnostics' on Sheet H310.21.

09. AUTOLOCK TEST POINTS

Step 1: Monitored Autolocks

The Horton Monitored Autolocks are controlled by an output signal from the C3150 Control referred to as LOCK. The status of this output is indicated by an Orange LED (D38) that illuminates when the output is active.

Lock Voltage Output at CN3 (Autolock Board) Anytime Lock output is active, measured voltage between pin $\mathbf{2}$ and pin 5 on CN3 of the Autolock Control Board should be approximately 5 Volts DC. For the Fail-Secure and Fail-Safe Lock, the solenoid should be energized.

\square C3150 Control Board- Partial View

\quad Solenoid Voltage Output at CN1

Initially, the solenoid will receive 25-33 volts to pull-in, but will quickly drop to approximately 10 volts in order to prevent overheating.

\square Lock Monitor Switch

Horton Monitored Autolocks are equipped with a microswitch that provides an Input signal to the C3150 referred to as MON. The status of this output is indicated by a Yellow LED (D34).

\square C3842 Control Board
For Fail-Secure and Fail-Safe Autolocks

10. MICROSWITCHES - LINEAR DRIVE

Step 1: Microswitch Wiring

Microswitch harness (C2155-4) connects to CN3 'ROD' Input connector on C3150 Control Board.

(COM) and Normally Open (NO) with the Switch Arm

11. C3150 CONTROL INITIALIZATION - BELT DRIVE

Step 1: Power-Up

Be sure the toggle circuit is complete before applying AC power to the unit. Caution: The Door will move.

- With power established, Control LED Displays the Door Mode and Type Traffic along with the Elapsed Time since last Reset.

- The Display then shows the Control Version and Date.

Ver 15.00 Build XX
(c) Horton 2017

Step 2: Learn Cycle

Instruct the control to perform a full learn cycle by:
\square Holding down the SET button and the RESET button.
\square Release the RESET button.
\square Hold the SET button approximately 5 seconds until 'Setup Request' appears on the screen.

Setup Request

Select Operator Type

- Display shows Default Operator Type: Current S2000B/S2003 Dunker/Merkle
\square Select the required Operator Type. Then press SET.
\sqcup Press UP button to cycle through optional Operator Types.
- If you press the UP button, the display shows next Operator Type: Current S2001
Dunker/Merkle
- If you press the UP button, the display shows next Operator Type:
Early Litton 2003
Select Operator
2003 Belt Early
- If you press the UP button, the display shows next Operator Type: Early Litton 2001
\sqcup When the required Operator is displayed, press the SET button.
Select Operator 2001 Belt Early
\sqcup Press the UP button to Confirm Operator Type.
\square Press the DOWN button to recycle through Operator Types.
For Section 15 Only.
Continue to Section
15 Marker

Step 2: Learn Cycle Cont:
\square Press the DOWN button for unmonitored Sensors.
\square Press the UP button if Sensors are connected and will be monitored.

Press the DOWN button to Disable Day/Nite Switch.
\square Press the UP button to Enable Day/Nite Switch.
Section 15 Marker
The Control then searches for a Lock Device connected to the Operator. The Display will show one of the following codes depending on the Lock type connected. In case of difficulty with the Lock, refer to Section 15 'BELT DRIVE - IF FAILED AUTOLOCK SETUP' on Sheet H310.19.

Lock Type Codes:

- No Lock Detected.
- Fail Secure Lock Recognized.
- Fail Safe Lock Recognized.

The Door will fully close at slow speed, looking for the fully closed position.

If the Door travels a short distance then stops, the pre-wired Safety Beams or other actuating devices are stopping the door and preventing the 'Learn Cycle' from completing.
\square To continue the 'Learn Cycle', Press and Hold the UP button until the door closes.

The Door will travel slowly in the open direction until it reaches the full open position.

Starting learn Cycle

Monitored Sensors? UP=Yes, DOWN=No

Enable Day/Nite SW?
UP=Yes, DOWN=No

Checking for Lock...

 No Lock Detected
Checking for Lock... Fail Secure Lock

Checking for Lock... Fail Safe Lock

Close Check Learning Stroke

First Closed Paused

Open Check Learning Stroke

Total Stroke:
$00 "(00 \mathrm{~cm})$

Step 2: Learn Cycle Cont:

The Control will save the data from the Learn Cycle.

Data Saved

- Time Delay in seconds. Starts when Activation Signal releases and door is fully open.

Time Delay 1

- Learning Reversing Peak Current for Close Accelerate.

Close Accelerate Learning Rev Peak

- Learning Reversing Sensitivity for Closing Speed.

Close Speed
Learning Rev Sens

- Learning Reversing Sensitivity for Braking Door.

Braking Door Learning Rev Sens

- Learning Reversing Sensitivity for Close Cushion.

Close Cushion Learning Rev Sens

Rev Learn Complete

Learning Cycle Complete.

- The LED display returns to Initial read-out.

Day 2-Way
Od: Oh: Om: Os

Step 3: Checking Door Cycle

When the toggle switch is on, the DOWN button acts as an actuation device. Caution: The Door will move. Be sure the safety beam area is clear of obstructions. Activation devices should not yet be installed.
\square Start with the door in the closed position.
\square Press the DOWN button to actuate the door to open at factory selected default settings.
\sqcup Inspect the door unit for smooth operation free of binds and noise.

- The LED display's initial Door

Open Accelerate Cycle read-out.

Step 3: Checking Door Cycle Cont:

The following Cycles are performed automatically by the C3150 Microprocessor Control. Illustrations below show the position of the door panels and the Display readout for each position.
*This demonstration assumes door was opened by the down button.

OPEN CYCLE

*Door actuated by local (Down) Button.
\square Motor Braking

Braking Door

Open Check

Act (Down)*

Open Cushion

Time Delay 1

CLOSE CYCLE

- The LED display's Initial Close Cycle read-out.

Close Speed

Step 3: Checking Door Cycle Cont:

The following graphics show the position of the door panels and the Display readout for each position.

OPEN CYCLE Cont:

\quad Close Cushion

- The LED display returns to Initial read-out.

Close Cushion

If there were no problems encountered during the Cycle Check procedure, if there are no parameters to be changed, and an Autolock is set-up, this concludes the C3150 Control's Initialization procedure.

If you are experiencing difficulty with the Control, refer to APPENDIX - A.

12. BELT DRIVE - ADJUSTING PARAMETERS

Step 1: Changing Parameter Settings

A chart of preset parameter values is shown on the next page. If any speeds or other settings need to be changed, follow the procedure listed below.
\square Turn the toggle (rocker) switch OFF (Blue LED on Control turns OFF).
\sqcup Or, double-click the SET button.

- 'Door Off Message blinks once, then P01 display window is shown.
\sqcup The display switches to the menu of adjustable parameters.
- Display window for P01 shown as example for changing the Open Speed.
\square Refer to attached chart for a list of adjustable parameter codes.
\sqcup Scroll through the parameter list using the UP and DOWN buttons until the parameter to be changed is found.

EXAMPLE:

\lrcorner Hold the SET button and simultaneously press the UP or DOWN button to modify the Speed setting.

- Pressing the UP button changes the Speed Value to 76.

Current Selected Parameter

Step 1: Changing Parameter Settings Cont:

EXAMPLE Cont:

\square Hold the SET button and simultaneously press the UP or DOWN button to modify the Speed setting.

- The DOWN button was pressed to change the Speed Value back to 75 (Default).
- The DOWN button was pressed a second time to change the Value to Decreased Speed
\square When the SET button is released, the display then shows the parameter that was changed along with the new value. Other parameters may be changed, or the toggle switch turned on to check the changes made.
- The SET button may be double-clicked to exit the menu (toggle must be on).

Day 2-Way Od: Oh: Om: Os

Step 2: Saving Parameter Settings

The toggle switch must be on after all adjustments have been made and checked.

Press and hold the SET button until 'Data Saved' is displayed. All changes are now stored in the control's memory. This step must be performed or the control, in the event of a power failure, will revert to the last 'Data Saved' settings.

Data Saved

13. BELT DRIVE - ADJUSTING PARAMETERS

Step 1: List 'Tech' Parameter Settings

The Chart below shows all the adjustable parameters. To make changes, follow the procedure in Step 1 outlined on the previous sheet.

NO.	PARAMETER	FACTORY DEFAULT	RANGE	NO.	PARAMETER	FACTORY DEFAULT	RANGE
P01	Open Speed	75	10-97\%	P35	Autoseal	Off	On/Off
P02	Open Check	14	5-31\%	P36	Day/Night Sw Enable	Off	On/Off
P03	Open Cushion	12	5-31\%	P37	Reduced Open Accel	Off	On/Off
P04	Open Check Point -Shown in Inches (cm)	75\%	50-90\%	P40	First Run Stop Okay	On	On/Off
P05	Close Speed	38	8-56\%	P42	Lock Present	As Learned	On/Off
P06	Close Check	14	5-31\%	P43	Lock Type Fail Safe	As Learned	On/Off
P07	Close Cushion	12	5-31\%	P44	Lock Has No Mon Sw	Off	On/Off
P08	Close Check Point -Shown in Inches (cm)	$6 "$	3"-18"	P45	Lock in Day Modes	Off	On/Off
P09	Delay 1	2 sec	2-255s	P46	Lock in 1 Way Modes	Off	On/Off
P10	Delay 2	2 sec	2-255s	P47	Resume on Aux 1/2 Clr	Off	On/Off
P11	Close Speed Rev Force	*	40-1000	P58	Remote Mode Enable	Off	On/Off
P12	Close Check Rev Force	**	20-400	P61	Int Sensor Monitored	Off	On/Off
P13	Braking Level	4	1-8	P62	Ext Sensor Monitored	Off	On/Off
P14	Total Stroke (Read Only)		12"-299"	P63	Safety Beam Monitored	Off	On/Off
P16	Control Password		0-9999	P64	Aux 1 Snsr Monitored	Off	On/Off
P17	Partial Open Point -Shown in Inches (cm)	50\%	25-100\%	P65	Aux 2 Snsr Monitored	Off	On/Off
P34	Cycle Test	Off	On/Off				

* (200\% of Learned Max Close Speed Current Units 1/10 Amp.)
** (200\% of Learned Max Check Speed Current Units 1/10 Amp.)

14. BELT DRIVE - ACTUATION FEATURES

Step 1: Setting Control Operating Modes

Set Jumpers and/or Parameters for the type operation required. Switches may be used in lieu of Jumpers.

\square 2-Way Day Mode:
Default setting requires no connections.

1-Way Day Mode:
Connect COM Input on CN1 to 1-WAY Input on CN4.

2-Way Night Mode:
Turn on Parameter 36.
The Control is in Night Mode with no connections made.

2-Way Day Mode:
With Parameter 36 turned on. Connect COM Input on CN1 to DAY-NITE Input on CN4.

1-Way Night Mode:
Connect COM Input on CN1 to 1 WAY Input on CN4 and DAY-NITE Input on CN4.

Night 1-Way Od: Oh: Om: Os
Day 2-Way Od: Oh: Om: Os
Night 2-Way Od: Oh: Om: Os

Refer to Section 21, Diagram 2: 'C3150 Control with Actuating and Switch Connections' on Sheet H310.46, for 4-Position Switch connection.

15. BELT DRIVE - IF FAILED AUTOLOCK SETUP

Step 1: Autolock Setup and Functions

Procede to Section 02: Step 2 'Learn Cycle' for the Belt Drive Slide Door Operator on sheets H310.12 thru marker on H310.13.
Press the UP button when the 'Monitored Sensors?' message appears in the display. The Control then searches for a Lock Device connected to the Operator.

Monitored Sensors?
UP=Yes, DOWN=No

Fail Secure Lock Installed:
Yellow Lock Monitor LED light is OFF.
Orange Lock Monitor light comes ON followed immediately by Lock Monitor light which indicates Fail-Secure Lock detected*.

- Fail Safe Lock Installed:

Yellow Lock Monitor LED light is ON which indicates there may be a FailSafe Lock connected.
Orange Lock Monitor light comes ON and YELLOW Monitor Light immediately goes OFF indicating that a functional Fail-Safe Lock is installed*.
\sqcup No Lock Detected:
Yellow Lock Monitor LED light is OFF.
Orange Lock Monitor light comes $\mathbf{O N}$ with no change to YELLOW Lock Monitor Light indicates a 'No Lock' situation or a malfunction of Lock.
There is a slight delay before the 'No Lock Detected' message appears.

Checking for Lock... Fail Safe Lock

Checking for Lock...

Checking for Lock... No Lock Detected
\square Fail-Secure Lock The most common type of Autolock.

TOP VIEW- LOCKED
With Power Removed, Solenoid Extends By Spring. Door Locks.

TOP VIEW- UNLOCKED
With Power Applied, Solenoid Retracts By Spring. Door Unlocks.

\square C5656-2 Fail Secure AutoLock
(2003 Shown- 2001 Similar) Door remains Locked at

\square Fail-Safe Lock Aless common type of Autolock.

TOP VIEW- UNLOCKED
With Power Removed, Solenoid Extends By Spring. Door Unlocks.

TOP VIEW- LOCKED
With Power Applied, Solenoid Retracts By Spring. Door Locks.
\square C5657-2 Fail Safe AutoLock (2003 Shown- 2001 Similar) Door Unlocks at Power Failure.

For Fail-Safe, Set one Jumper on JB1 Pins as shown.

16. SETTING LOCK PARAMETERS

Step 1: Lock Parameter Verification

The following lock parameters will be set automatically if using a Horton Monitored Lock.

DOWN
DO SET RESET

- For a Fail-Secure Lock, turn ON Parameter P42 'Lock Present'.
\sqcup For a Fail-Safe Lock, turn ON parameter P42 'Lock Present' and P43 'Lock Type Fail Safe'.

A Chart of preset lock parameters is shown at right for your reference.

NO.	PARAMETER	FACTORY DEFAULT	RANGE
P42	Lock Present	Off	On/Off
P43	Lock Type Fail Safe	Off	On/Off
P44	Lock Has No Mon Sw	Off	On/Off
P45	Lock in Day Mode	Off	On/Off
P46	Lock in 1-Way Mode	Off	On/Off

The settings below will identify the lock type. Note that by default, the locks will engage only in the NIGHT MODE.

- The control has detected a lock device connected to the Operator.
- Control parameter indicates Lock is Fail-Secure.
- Control parameter indicates Lock is Fail-Safe.

Lock Present

P42: On

Lock Type Fail Safe P43: Off

Lock Type Fail Safe
P43:
On

In order to implement locking of device in a setting other than NIGHT MODE, one of the following parameters must be turned ON.

- With parameter P45 ON, door will lock in Day Mode (Full Time).

Lock in Day Mode P45: On

- With parameter P46 ON, door will only lock in 1-Way Mode.

Lock in 1-Way Mode P46: On

- If using a non-monitored lock such as a magnetic lock, this parameter is used to provide a brief delay to allow the lock time

Lock Has No Monitor Sw to release before opening door.

17. LOCK ERROR CODES

Step 1: Lock Diagnostics

Fail-Secure Lock - Failed To Unlock Condition

When the C3150 Control equipped with a Fail-Secure Lock is given an Open command, the control issues a Lock output signal (Orange LED) and waits for the MON (Lock Monitor Switch) Yellow LED to illuminate.
If the Control fails to receive the MON unlock verification signal, the Yellow LED does not come on.

- 'Failed to Unlock' message displayed. Control then performs a 'Jog' routine to unblock the door.

Fail-Secure Lock - Door Binding

When a door with a C3150 Control and equipped with a FailSecure Lock closes, the solenoid releases its spring, engaging a mechanism that locks the door.
Lock Monitor Switch (yellow LED) remains On indicating a mechanical bind or displaced Monitor Switch.

- 'Failed to Lock' message displayed for 1 second.
- Display then shows default 'Day 2-Way' Mode Setting.

Failed to Lock

Day 2-Way Od: Oh: Om: Os

Fail-Safe Lock - Failed To Unlock Condition When a door with a C3150 Control and equipped with a FailSafe Lock is given an Open command. Control turns Off Lock output signal (Orange LED) and waits for solenoid to de-energize and the MON input to illuminate.
If the Control fails to receive the MON unlock verification signal, the Yellow LED does not come on.

- 'Failed to Unlock' message displayed.

Fail-Safe Lock - Door Binding

When a door with a C3150 Control and equipped with a FailSecure Lock closes, the Lock output (Orange LED) illuminates and the solenoid locks the door.
Lock Monitor Switch (yellow LED) remains On indicating a mechanical bind or displaced Monitor Switch.

- 'Failed to Lock' message displayed for 1 second.

Failed to Lock

17. LOCK ERROR CODES

Step 1: Lock Diagnostics cont:

\sqcup Fail-Secure Lock - Failed to Lock Condition cont:

- Display then shows default 'Day 2-Way' Mode Setting.

Day 2-Way Od: 0h: Om: Os

18. AUTOLOCK TEST POINTS

Step 1: Monitored Autolocks

The Horton Monitored Autolocks are controlled by an output signal from the C3150 Control referred to as LOCK. The status of this output is indicated by an Orange LED (D38) that illuminates when the output is active.

Lock Voltage Output at CN3

Anytime Lock output is active, measured voltage between pins 2 and pin 5 on CN3 of the Autolock Control Board should be approximately 5 Volts DC. For the Fail-Secure and Fail-Safe Lock, the solenoid should be energized.

\square C3150 Control Board- Partial View

\sqcup Solenoid Voltage Output at CN1
Initially, the solenoid will receive $25-33$ volts to pull-in, but will quickly drop to approximately 10 volts in order to prevent overheating.

Lock Monitor Switch

Horton Monitored Autolocks are equipped with a microswitch that provides an Input signal to the C3150 referred to as MON. The status of this output is indicated by a Yellow LED (D34).

18. AUTOLOCK TEST POINTS

Step 1: Monitored Autolocks Cont:

\square Monitor Switch Input Active
If MON Input is active (D34 Yellow LED is on), for Fail-Secure or Fail-Safe locks, the door can be opened manually or via the motor.
This function can be tested by manually cycling the lock and watching MON LED for status change.

- Fail-Secure Locks = LOCK and MON illuminate simultaneously.
- Fail-Safe Locks = LOCK and MON illuminate alternately.

C3150 Control Board- Partial View

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

Step 1: Entering Diagnostic Menu

\square To enter the Diagnostic Menu, double-click the UP button.

- Display Message blinks:
- Then Display message shows:
\square Or press the UP and RESET buttons simultaneously, then release the RESET button contining to hold the UP button.
- Display Message blinks:
\square Then release the UP button.
- Display Message shows:

D01- Multifunction Test

A. Navigating Thru Functions

The Multifunction Test is provided to enable the Technician the ability to isolate and verify features of the C3150 Control. This diagnostic tool can be used to verify Inputs from the encoder, microswitches, locks (Lock Monitor), and the Close-Monitor (optional- requires additional hardware). It also displays the Output from the Control that activates the Lock Solenoid. In addition to these features, the Multifunction Diagnostic can be used to drive the motor forward and in reverse (at Open-Check or Close-Check speed) to verify proper motor function. Likewise, the Autolock can be tested for proper function using the SET button.
In the D01 Section, Motor/Encoder Test, the UP and DOWN buttons drive the door OPEN or CLOSED respectively. The SET button controls the Lock Function. Note that the display messages will vary depending on the door operator type.

- Display viewed with no buttons pushed.

Diagnostic Menu

Multifunction Test

D01
SET: Go
Diagnostic Menu

Multifunction Test D01
 SET: Go


```
Multifunction Test D01
SET: Go
```


Encoder: 0
 LKMon

Only if Fail-Safe Lock installed.

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test

B. Motor and Encoder Test - Belt Drive Units
\sqcup To Test the Motor and Encoder, press the SET button.

- Display Message Reads:

Encoder: 0

- Display viewed with no buttons pushed.

Press the UP button to drive the door open. Encoder Counts are displayed at the top of the message with the Voltage and Current at the bottom of the message. The Voltages/Current settings shown are reflected in the Open-Check speed setting.

Changing Open-Check will raise or lower Voltage/Current readings. Temporarily lowering values will slow the encoder counter making it easier to read.

Encoder: 0

 LKMon\square Press DOWN button to drive the door closed. Encoder Counts are displayed at the top of the message with the Voltage and Current at the bottom of the message. The Voltages/Current setting shown are reflected in the Close-Check speed setting.

Changing Close-Check will raise or lower Voltage/Current readings. Temporarily lowering values will slow the encoder counting to make it easier to read. It is not unusual for the Count to fail to return completely to 0 due to mechanical tolerances.

D01- Multifunction Test

C. Fail-Secure Lock Test - Belt Drive Units

- Display Initial Message reads:
\square To Test the Fail-Secure Lock, press the SET button, Solenoid will engage.
- Display Message shows Lock and Lock Monitor:
- Lock (D38) and Lock Monitor (D34) LED Lights are illuminated on C3150 Control Board.

Encoder: 0 Lock LKMon

Encoder: 0

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test

D. Fail-Safe Lock Test - Belt Drive Units Cont:
\square The Fail-Safe Lock and Lock Monitor are present and connected.

- Display Initial Message reads:

Encoder: 0 LKMon

- Lock Monitor (D34) LED Light is illuminated on C3150 Control Board.

To Test the Fail-Safe Lock, press the SET button. The Solenoid then engages.

- Display Message then changes from LKMon to Lock as shown:

Encoder: 0 Lock

- Lock Monitor (D34) LED Light extinguishes on C3150 Control Board while Lock (D38) LED illuminates.

Close Cutoff* Lock / LKMon

*Depending on door position, display will read 'Close Cutoff', 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cuoff'.

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test

E. Motor and Microswitch Test - Linear Drive Units Cont:
\square Press the UP button to drive the door open. The Voltage/Current setting shown are reflected in the Open-Check speed setting. Temporarily lowering values will slow the encoder counter making it easier to read.
\square Press the DOWN button to drive the door closed. The Voltage/ Current setting shown are reflected in the Close-Check speed setting.

Changing Close-Check will raise or lower Voltage/Current readings.

- Display Message in Close-Check Zone reads:

Changing Open-Check will raise or lower Voltage/Current readings.

- Display Message at Close-Cutoff Switch reads:
- Display Message in Close-Check Zone reads:
- Display Message at Mid-Stroke (No Switches Tripped) reads:
- Display Message in Open-Check Zone reads:
- Display Message at Open-Cutoff Switch reads:
*Settings shown above and below will vary.
- Display Message at Open-Cutoff
Switch reads:
- Display Message in Open-Check Zone reads:

Open Cutoff
Drive: 17.2V,* 0.90A*

Open Check
Drive: 17.2V,* 0.90A*

- Display Message at Mid-Stroke
(No Switches Tripped) reads:
- Display Message at Mid-Stroke
(No Switches Tripped) reads:

Close Check
Drive: 17.2V,*
0.90A*

Door Mid Stroke
Drive: 17.2V,*
0.90A*

Open Check
Drive: 17.2V,*
0.90A*

Open Cutoff
Drive: 17.2V,*
0.90A*

Door Mid Stroke
Drive: 17.2V,* 0.90A*

Close Check
Drive: 17.2V,* 0.90A*
19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test

E. Motor and Microswitch Test - Linear Drive Units Cont:

- Display Message at Close-Cutoff Switch reads:

D01- Multifunction Test

F. Fail-Secure Lock Test - Linear Drive Units

\square To Test the Fail-Secure Lock:
(A) Press the SET button.

- Display Message reads:

Solenoid will engage.

- **Depending on door position, display will read 'Close Cutoff', 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cutoff'.
Display Message shows Lock and Lock Monitor.

SET

Close Cutoff
Drive: 17.2V,* 0.90A*
*Settings shown above will vary.

Close Cutoff

	D34
	Monitor Switch
Yellow LED	
	D38
	Oork Output
Orange LED	
- Lock (D38) and Lock Monitor (D34)	
LED's are illuminated on C3150 Control	
Board.	

Close Cutoff ** Lock LKMon

(B) Release the SET button.

- *Depending on door position, display will read 'Close Cutoff', 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cuoff'.

Close Cutoff*

LED's are illuminated on C3150 Control Board.

- Lock (D38) and Lock Monitor (D34) LEDs are extinguished on C3150 Control Board.

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test

G. Fail-Safe Lock Test - Linear Drive Units
\square To Test the Fail-Safe Lock:
(A) Press the SET button.

- Display Message reads:

Close Cutoff* LKMon

Solenoid will engage.

- *Depending on door position, display will read 'Close Cutoff, 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cuoff'.

Close Cutoff* Lock

Display Message shows Lock.
\qquad
M34
Monitor Switch
Yellow LED Yellow LED
D38
L38
Orange LED

- Lock (D38) is illuminated and Lock Monitor (D34) LED extinguishes on C3150 Control Board.

(B) Release the SET button.
- *Depending on door position, display will read 'Close Cutoff', 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or

Close Cutoff* LKMon 'Open-Cuoff'.

- Lock (D38) is extinguished and Lock Monitor (D34) LED is illuminated on C3150 Control Board.

D02- Show Supply Voltages

D02 on the Diagnostics Menu shows supply voltages. Enter the Diagnostics Menu then press the UP or DOWN button to navigate to the various Sections D01 through D08.
Note that double-clicking the SET button returns you to the previously visited Section in Diagnostic Menu. Pressing the RESET button exits the Diagnostic Menu.
\square To enter the Diagnostic Menu, double-click the UP button.

- Display Message blinks:
- Then Display message shows:

D02 Show Supply Voltages

\sqcup To enter the D02 'Show Supply Voltages' Section, press the UP button.

> - Display message shows:
\square To show the supply voltages, press the SET button.

- Display Message shows: V1- High Voltage V2- Low Voltage V3 - Factory Only V4 - Factory Only

Double-click the SET button to return to the last section visited in the Diagnostic Menu.

- Display flashes the message,'Returning to Menu' or D02 in this case. Message then reads:

D03-Read Counters

\sqcup To enter the D03 'Read Counters' Section, press the UP or DOWN button to navigate to D03.

- Display message reads:
\square To view the counters, press the SET button.
- Display Message reads:

Show Supply Voltages

Read Counters

SET: Go

Cycles
 0 Hobbs: 59

Values shown will vary.

Read Counters

D03
SET: Go

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D04-Read Log

\square To enter the D04 'Read Log' Section, press the UP or DOWN button to navigate to D04.

(U) (TOWA SET RESET

Read Log
D04
SET: Go

Log is Empty

Read Log
 D04

SET: Go
\square List of possible D04 Event Codes - 'Always Logged' that would be viewed on the 'Read Log' if applicable.

D04 EVENT CODES ALWAYS LOGGED	
1.	+15 V Supply Failure
2.	+24 V Supply Failure
3.	+120 V Supply Failure
4.	Attempting Restart
5.	Aux Act On $>60 \mathrm{~s}$
6.	Aux1 On $>60 \mathrm{~s}$
7.	Aux1 Test Fail
8.	Aux2 On $>60 \mathrm{~s}$
9.	Aux2 Test Fail
10.	Close Check Timeout
11.	Close Speed Timeout
12.	Cls Accel Pulse Loss
13.	Cls Check Pulse Loss

D04 EVENT CODES ALWAYS LOGGED	
14.	Cls Speed Pulse Loss
15.	EEPROM Failure
16.	Encoder Failure
17.	Ext Motion On >60 s
18.	Ext Presnc On > 60s
19.	Ext Sensor Test Fail
20.	Failed to Lock
21.	Failed to Unlock
22.	Full Open
23.	Illegal Instruction
24.	Int Motion On $>60 \mathrm{~s}$
25.	Int Presnc On $>60 \mathrm{~s}$
26.	Int Sensor Test Fail

D04 EVENT CODES ALWAYS LOGGED	
27.	Motor Drive Failure
28.	Motor Failure
29.	No Close Spd Harness
30.	No Open Spd Harness
31.	Open Accel Pulse Loss
32.	Open Check Pulse Loss
33.	Open Check Timeout
34.	Open Speed Timeout
35.	Opn Speed Pulse Loss
36.	Saf Beam On > 60s
37.	Saf Beam Test Fail
38.	Watchdog Timeout

D05 Clear Cycle Counter

\square To enter the D05 'Clear Cycle Counter' Section, press the UP or DOWN button to navigate to D05.

> - Display message reads:
\sqcup To clear the counter, press the SET button.

- Display Message reads:

Clear Cycle Counter D05 SET: Go

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D05 Clear Cycle Counter Cont:

- Press the UP button to proceed or press the DOWN button to return to D05 'Clear Cycle Counter' Section.
- If the UP button is pressed, display reads:

Double-click the SET button to return to the last section visited in the Diagnostic Menu.

- Display flashes the message,'Returning to Menu' or D05 in this case. Message then reads:

Clear Cycle Counter D05
 SET: Go

Clear Log

D06
SET: Go

Are you sure?

UP=Yes, DOWN=No

- Display Message reads:
- Press the UP button to proceed or press the DOWN button to return to D06 'Clear Log' Section.
- If the UP button is pressed, display reads:
- Double-click the SET button to return to the last section visited in the Diagnostic Menu.
- Display flashes the message,'Returning to Menu' or D06 in this case. Message then reads:

Log Cleared

Clear Log

SET: Go

Zero Stroke
\square To Zero the Stroke, press the SET button.

- Display Message reads:

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D07-Zero Stroke Cont:

\sqcup Press the UP button to proceed or press the DOWN button to return to D07 'Zero Stroke' Section.

- If the UP button is pressed, display reads:

Double-click the SET button to return to the last section visited in the Diagnostic Menu.

- Display flashes the message,'Returning to Menu' or D07 in this case. Message then reads:

Stroke Zeroed

Zero Stroke D07
 SET: Go

Set Rholix Block D08 SET: Go

\square When the SET button is pressed, the motor will spin the rod in a direction that will close the door ignoring all motion sensors. Place a Force Gauge between the jamb and the strike edge of the door. Adjust to 28 lbs. by tightening or loosening the bolts shown in the illustration below with a wrench or channel lock pliers.

For Linear Drive Operators only. To procede, press the SET button. Note that the Control knows the Operator is a Belt Drive Unit and will respond accordingly.

Troubleshooting_Power Supply on C3150 Control V15.00.00
The C03150.1500 Control has line voltage coming into connector CN9. Pin 1 is line voltage (black) and pin 2 is neutral (white). Refer to Image 1 below.

Figure 1, C3150 Slide Door Microprocessor Control Board

1. The 120 Volt AC Line Voltage (pin 1 on CN9) is connected directly to the right side Fuse F1 (3.15 amp slow blow 5×20) via the printed circuit board. The left side of F1 Fuse supplies current to one side of the transformer's primary winding via connector CN 11 pin 7 (white wire) and CN11 pin 2 (orange wire). This line is also connected in-parallel to the primary winding of the transformer via connector CN11 pin 6 (black wire) and CN11 pin 1 (brown wire).

If incoming power AC voltage is detected at CN9 pin 1 and 2 (Image 1), leave multimeter lead on CN9 pin 2 (neutral- white wire) and move the other lead to the farside of F1 fuse (Image 2 below).

20. APPENDIX - A Cont:

Troubleshooting_Power Supply on C3150 Control V15.00.00 Cont:
2. Return from the transformer to the neutral side of the incoming power is via a parallel connection CN11 pin 7 (white wire) and CN11 pin 2 (orange wire).
3. The Transformer' $\mathbf{s} 18$ volt secondary winding is connected to the C3150 control through the green wires at CN11 pin 4 and CN 11 pin 9 . It can be tested by connecting multimeter to CN11 pin 4 (green wire) and lead of RT1 that is closest to the fuse (Image 3 at right). If the transformer is good, multimeter should detect 18-20 volts AC. Move red lead to the opposite lead on RT1, voltage should be approximately the same. If RT1 contact has opened because of overcurrent, voltage here will be much less.

4. The 24 Volt $D C$ supply is produced by connecting the 18 Volt AC secondary tap to rectifier D5 through (RT1) which is a PPTC and can be thought of as a resettable fuse. This rectified circuit is filtered by capacitors C 110 and C 11 to produce an unregulated 24 Volts DC for motion detector and auxiliary use. This circuit can be tested / connected to on connector CN 1 between 24 V and common. If an overcurrent condition occurs in this circuit, the Polymeric Positive Temperature Coefficient Device (PPTC) will heat up and gradually reduce the current flow to the point that the components fed by this circuit quit working. RT1 will feel warm to the touch.

Remove all components that can cause an overcurrent condition such as motion detectors, safety beam, autolock and anything connected to the 24 V terminals of CN1. It will usually be necessary to kill power for 30 seconds or more to allow the PPTC to cool and resume normal conduction. Faulty circuit can sometimes be identified by reintroducing components one at a time (killing power each time) until the circuit opens again.

Figure 2, Control Board Partial View_Left Side
5. The 5 volt supply is provided by the U8 switching regulator which provides for the microprocessor, all of the LEDs and the input. This circuit can be tested at pins 1 and 4 of CN6 (Encoder) or between common of CN1 and any of the 10 inputs at CN4.

Most devices connected to the 5 volt supply draw very little current. The overall load is limited to 500ma. If this threshold is exceeded (or shorted), the regulator will shut down to protect itself and other components. Shorted encoder or autolock would be the most likely culprit. Unplug the devices, kill power for 30 seconds and retry. Bridge circuit to drive the motor. The 90 Volt AC circuit can be tested as shown below.

Figure 3, Control Board Partial View_Right Side
6. The 130 Volts DC Motor Voltage: One red wire from the 90 Volts AC transformer tap terminates at CN11 pin 5 red wire of the C3150. The other red wire is terminated at CN11 pin 10 of the C3150 and is connected to one side of Fuse F2 (3.15 amp slow blow 5×20). The other side of the fuse is connected to rectifier D21 with a return to the other transformer red wire which terminates at CN11 pin 5 . The rectified output of D21 is filtered by capacitor C14 and provides 130 Volts filtered DC for the H Bridge circuit to drive the motor. The 90 Volt AC circuit can be tested as shown (Image 4 at right).

20. APPENDIX - A Cont:

Troubleshooting_Power Supply on C3150 Control V15.00.00 Cont:
7. Check F2 Fuse with Red Multimeter

Lead on farside of F2 Fuse and Black Lead on CN11 pin 5 (Image 4 at right). If voltage is present, fuse is good.

20. APPENDIX - B

Status Messsages_C3150 Control V15.00.00

MESSAGE	$\begin{array}{\|l\|} \hline \text { DOOR } \\ \text { TYPE } \end{array}$	DESCRIPTION
Act (Aux Act)	Both	Door was actuated to open by auxiliary input.
Act (Com)	Both	Door was actuated to open by communications port.
Act (Cycle Test)	Both	Door was actuated to open by cycle test option.
Act (Down)	Both	Door was actuated to open by local (DOWN) button.
Act (Ext Sensor)	Both	Door was actuated to open by exterior sensor.
Act (Fire Input)	Both	Door was actuated to open by fire alarm.
Act (Int Sensor)	Both	Door was actuated to open by interior sensor.
"Are you sure? UP=Yes, DOWN=No"	Both	Confirmation message before certain critical tasks will be executed.
Attempting Restart	Both	Control is attempting a restart following a fatal error. Restart request was issued by placing door in "off" mode, or remotely via communications port.
Autoseal	Both	Door is executing periodic autoseal routine to insure weatherstrip seal. Autoseal runs approximately every twenty (20) seconds if Autoseal parameter is enabled, provided door is closed and idle.
Aux1 On > 60s	Both	Warning message, Aux1 input has been on continuously for over 60 seconds.
Aux1 Test Fail	Both	Aux1 sensor reported failure when self-test was requested by control.
Aux2 On > 60s	Both	Warning message, Aux2 input has been on continuously for over 60 seconds.
Aux2 Test Fail	Both	Aux2 sensor reported failure when self-test was requested by control.
Aux Act On > 60s	Both	Warning message, auxiliary actuate input has been on continuously for over 60 seconds.
Braking Door	Both	Control is decelerating door to either Open Check speed (while opening) or Close Check speed (while closing).
Check Fuse F2	Both	Informative message for possible cause of +120 V power supply failure.
Check 24V Wiring	Both	Informative message for possible cause of +24 V power supply failure.
Checking for lock...	Both	During setup, control is checking for presence of a monitored lock.
Clear Cycle Counter	Both	Diagnostic menu item, press SET to clear cycle counter. Confirmation is required. Hobbs counter is not cleared.
Clear Log	Both	Diagnostic menu item, press SET to clear data log. Confirmation is required.
Close Accelerate	Both	Door is accelerating from zero velocity to selected close speed setting.
Close Check	Both	In normal operation, door is traveling at the selected close check setting.
Close Check	Linear	In multifunction diagnostic, a linear drive door's switches show it in the close check zone.
Close Check Timeout	Linear	During closing, close cushion condition not encountered when expected.
Close Cushion	Both	Door is almost fully closed and is traveling at the selected close cushion setting.
Close Cutoff	Linear	In multifunction diagnostic, a linear drive door's switches show it at the close cutoff position.
Close Speed	Both	Door is traveling at the selected close speed setting.
Close Speed Timeout	Linear	During closing, close check condition not encountered when expected.
Cls Accel Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during close accelerate portion of close cycle.
Cls Check Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during close check portion of close cycle.
Cls Speed Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during close speed portion of close cycle.
Cmon	Both	During multifunction diagnostic, this is displayed if close monitor/partial open switch input contact is present.

20. APPENDIX - B Cont:

Status Messsages_C3150 Control V15.00.00 Cont:

MESSAGE	$\begin{aligned} & \text { DOOR } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION
Control is Locked!	Both	A set password is preventing an attempt was made to access diagnostics or setup mode following control reset.
Counter Cleared	Both	A Clear Counter request has been successfully processed. The user resettable cycle counter has been set to ' 0 '.
Cycle Test Mode	Both	Displays when Cycle Test parameter has been turned on. Door will self cycle open and closed, with an approximate two (2) second pause at full close before next cycle self-initiates. Used for test purposes only.
Cycles:	Both	Total opening cycles (including recycles) since cycle counter was last reset.
* Diagnostics Menu *	Both	Informative message that the diagnostics menu has been entered.
Data Saved	Both	Site specific parameters and/or user data have been successfully stored in control's permanent memory.
Day 1-Way, Day 1-Way Partial	Both	Door is idle and is in day 1-way mode. Message is followed by "Partial" if partial open mode is also enabled.
Day 2-Way, Day 2-Way Partial	Both	Door is idle and is in day 2-way mode. Message is followed by "Partial" if partial open mode is also enabled.
Day Mode Ready	Both	Logged message only, control is idle in day mode state.
Door Mid Stroke	Linear	During multifunction diagnostic, this is displayed if no microswitches are tripped on a linear drive door type.
Door Off (User)	Both	Door has been placed in the menu (off) mode by user interface or remote serial command.
Door Off (Tech)	Both	Door has been placed in the menu (off) mode by technician (double click of SET button).
Door Position	Belt	When displayed within a data log entry, this is the position of a belt drive door (in pulses) at which the event occurred.
Door Stopped	Both	Door has been stopped by local or remote stop command and will restart automatically when stop command clears.
Drive:	Both	In multifunction diagnostic, this is followed by the motor voltage and current.
EEPROM Failure	Both	Internal failure, replace control.
Encoder:	Belt	In multifunction diagnostic, this is followed by the current door position (in pulses).
Encoder Failure	Belt	Insufficient encoder pulses unexpectedly encountered. Reported at the end of an attempted open cycle.
*** ERROR ***	Both	An error of some type has occurred.
Exiting Diagnostics	Both	Informative message when control is exiting diagnostic mode. Normal operation will resume.
Ext Sensor On > 60s	Both	Warning message, exterior sensor has been on continuously for over 60 seconds.
Ext Sensor Test Fail	Both	Exterior sensor reported failure when self-test was requested by control.
Fail Safe Lock	Both	During setup, a fail safe lock has been detected when a control query was made.
Fail Secure Lock	Both	During setup, a fail secure lock has been detected when a control query was made.
Lock Failure	Both	The autolock has failed to successfully lock following a request to do so.
Failed To Unlock	Both	The autolock has failed to successfully unlock following a request to do so.
First Close Paused	Belt	Progress of First Close routine has been halted by some type of actuating or safety device input.
First Close Run	Belt	Control is learning fully closed/home position following startup or initiation of 'Learn' cycle.
First Open Run	Belt	Control is learning fully open position during 'Learn' cycle.
Full Open	Both	Logged message only, door is at full open position.
Hobbs:	Both	Total opening cycles (including recycles). Not field resettable.
Hold: Interior Motion	Both	Door is at full open position and is being held open by the indicated device.

20. APPENDIX - B Cont:

Status Messsages_C3150 Control V15.00.00 Cont:

MESSAGE	$\begin{aligned} & \text { DOOR } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION
Hold: Interior Prsnc	Both	Door is at full open position and is being held open by the indicated device.
Hold: Exterior Motion	Both	Door is at full open position and is being held open by the indicated device.
Hold: Exterior Prsnc	Both	Door is at full open position and is being held open by the indicated device.
Hold: Aux Actuate	Both	Door is at full open position and is being held open by the indicated device.
Hold: DOWN Button	Both	Door is at full open position and is being held open by the indicated device.
Hold: Safety Beam	Both	Door is at full open position and is being held open by the indicated device.
Hold: Com Channel	Both	Door is at full open position and is being held open from a remote location (communications port).
Home Position Pending	Belt	In a belt drive system with NO close monitor switch, shows that stroke is not yet confirmed. Slow speed operation only.
Illegal Instruction	Both	An internal failure or programming error has issued an illegal instruction to the microcontroller. Consult factory.
Int Sensor On > 60s	Both	Warning message, interior sensor has been on continuously for over 60 seconds.
Int Sensor Test Fail	Both	Interior sensor reported failure when self-test was requested by control.
Learn Cycle Complete	Belt	Learn cycle successfully completed and data stored. Control is ready for regular operation.
Learning Rev Peak	Both	Control is learning maximum motor current sampled during close accelerate portion of close cycle.
Learning Rev Sens	Bolt	Control is learning maximum motor current sampled during close speed and close check portions of close cycle.
Learning Stroke	Belt	Control is learning encoder count during 'Learn' cycle.
LKMon	Both	In multifunction diagnostic, this is displayed if the lock monitor contact is triggered.
LOCK	Bolt	In multifunction diagnostic, this is displayed if the lock is being triggered (SET button is pushed).
Log Cleared	Both	A Clear Log request has been successfully processed and the data log is purged.
Log is Empty	Both	The data log is empty and there are no items to display.
Motor Drive Failure	Both	An internal failure has occurred and the control is not supplying motor drive energy. Replace control.
Motor Failure	Both	Motor drive energy is being supplied, but the motor is not responding. Check motor and replace if necessary.
Multifunction Test	Both	Diagnostic menu item, press SET to enter Multifunction Test.
Night 1-Way, Night 1-Way Partial	Both	Door is idle and is in night 1-way mode. Message is followed by Partial if partial open mode is also enabled.
Night 2-Way, Night 2-Way Partial	Both	Door is idle and is in night 2-way mode. Message is followed by Partial if partial open mode
Night Mode Ready	Both	Logged message only, control is idle in night mode state.
No Cls Speed Harness	Linear	Close speed microswitch(es) missing or defective, detected and reported when door begins closing.
No Lock Detected	Both	During setup, no lock was detected when a control query was made.
No Opn Speed Harness	Linear	Open speed microswitch(es) missing or defective, detected and reported when door begins opening.

Status Messsages_C3150 Control V15.00.00 Cont:

MESSAGE	$\begin{gathered} \text { DOOR } \\ \text { TYPE } \end{gathered}$	DESCRIPTION
No Switches Found!	Linear doors."	During multifunction diagnostic, this is displayed if no microswitch harness is detected on linear drive
Not For Belt Drives!	Belt	Rholix block setting test cannot be executed if control is currently set for a belt drive door type.
Obst (Beam)	Both	The external safety beam has recycled the door during its closing cycle.
Obst (CAcl I)	Both	Motor current over the predetermined threshold has recycled the door during its closing acceleration routine.
Obst (CChk I)	Both	Motor current over the predetermined threshold while within the close check zone has recycled the door.
Obst (CChk LOP)	Both	An unexpected cessation of encoder pulses within the close check zone has recycled the door.
Obst (CSpd I)	Both	Motor current over the predetermined threshold while within the close speed zone has recycled the door.
Obstruction Stop	Both*	Obstruction encountered while opening, door temporarily halted. Operation automatically resumes at check speed.
Off	Both	In menu mode, the parameter currently displayed is disabled.
On	Both	In menu mode, the parameter currently displayed is enabled.
Open Accelerate	Both	Door is accelerating from zero velocity to selected open speed setting.
Open Check	Both	In normal operation, door is traveling at the selected open check setting.
Open Check	Linear	In multifunction diagnostic, a linear drive door's switches show it between the open check and open cutoff positions.
Open Check Timeout	Linear	During opening, open cushion condition not encountered when expected.
Open Cushion	Both	Door is almost fully open and is traveling at the selected open cushion setting.
Open Cutoff	Linear	In multifunction diagnostic, a linear drive door's switches show it at the open cutoff position.
Open Resume	Both	Sidelight protection has cleared. Door has resumed normal open speed.
Open Resume (Partial)	Belt	Sidelight protection has cleared. Door has resumed normal open speed and is traveling to partial open position.
Open Speed	Both	Door is traveling to open position at the selected open speed setting.
Open Speed (Partial)	Belt	Door is traveling to partial open position at the selected open speed setting.
Open Speed Timeout	Linear	During opening, open check condition not encountered when expected.
Opn Accel Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during open accelerate portion of open cycle.
Opn Check Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during open check portion of open cycle.
Opn Speed Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during open speed portion of open cycle.
Partial Open	Both	Logged message only, door is at partial open position.
Password:	Both	Control is requesting technician to enter the set password before menu may be accessed.
Password Bad: Turn Door On to Restart	Both	Entered password does not match set value. Technician must cycle on/off contact before trying again.
Press SET to Accept	Both	Press SET to accept the value shown on the screen.
Read Counters	Both	Diagnostic menu item, press SET to read cycle and Hobbs counters.
Read Log	Both	Diagnostic menu item, press SET to read data \log.
Recycl (Aux Act)	Both	Door was recycled during closing by auxiliary input.
Recycl (Beam)	Both	Door was recycled during closing by safety beam.
Recycl (Com)	Both	Door was recycled during closing by communications port.
Recycl (Down)	Both	Door was recycled during closing by local (DOWN) button.
Recycl (Ext Sensor)	Both	Door was recycled during closing by exterior sensor.
Recycl (Fire Input)	Both	Door was recycled during closing by fire alarm.
Recycl (Int Sensor)	Both	Door was recycled during closing by interior sensor.
Replace Control	Both	A fatal error has occurred. Replace control.
Returning To Menu	Both	A diagnostic test has been exited and the control is returning to the main diagnostics menu.

20. APPENDIX - B Cont:

Status Messsages_C3150 Control V15.00.00 Cont:

MESSAGE	$\begin{aligned} & \text { DOOR } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION
Rev Learn Complete	Both	The control has successfully learned site specific obstructin (motor overcurrent) settings.
Rev Re-Learn Enabled	Both	During next closing cycle, control will attempt to re-learn site specific obstruction (motor overcurrent) settings.
S2000 Linear	Both	Selected door type is S2000 linear (Rholix drive) type.
S2003 Belt	Both	Selected door type is S2003 belt type with current operator.
S2001 Belt	Both	Selected door type is S2001 belt type with current operator.
S2003 Belt (Early)	Both	Selected door type is S 2003 belt type with earlier operator. Provided for compatibility.
S2001 Belt (Early)	Both	Selected door type is S 2001 belt type with earlier operator. Provided for compatibility.
Saf Beam On > 60s	Both	Warning message, safety beam sensor has been on continuously for over 60 seconds.
Saf Beam Test Fail	Both	Safety beam system reported failure when self-test was requested by control.
Select Operator:	Both	Control is requesting operator type during setup routine. Use UP or DOWN to select, then press SET.
Set Rholix Now?	Linear	Control is requestion confirmation that a Rholix block setup is to be performed. Press UP to begin or DOWN to cancel.
Setup Request	Both	A setup (initialization) request has been received.
Setup - Confirm?	Both	Control is requesting confirmation that a setup is to be performed. Press UP to begin setup or DOWN to cancel.
Show Supply Voltages	Both	Diagnostic menu item, press SET to show internal power supply voltages.
Starting Learn Cycle	Belt	Control is starting Learn Cycle to determine stroke and other site specific parameters.
Stop Command	Both	Door has been stopped by local or remote stop command and will restart automatically when stop command clears.
Stroke Confirmed	Belt	In a belt drive system with NO close monitor switch, shows that stroke is valid and normal speed operation will commence.
Stroke Out of Range	Belt	Stroke measured during 'Learn' cycle is less than 12 " (30.5 cm)or greater than 299" $(759.5 \mathrm{~cm})$.
Stroke Zeroed	Belt	A Zero Stroke request has been successfully processed. Control will automatically execute a complete Learn Cycle next time it is started.
System Boot	Both	Logged message only, occurs when control initially starts up following a power failure.
Time Delay 1	Both cycle.	Door is full open position and all open commands have ceased. Delay 1 is counting down prior to close
Time Delay 2	Both	Door is in partial open position and all open commands have ceased. Delay 2 is counting down prior to close cycle.
Total Cycles	Both	Total cycles as stored in Hobbs counter, displayed immediately after control reset or startup.
Total Stroke:	Belt	Displays measured stroke of door in both inches and centimeters.
Unlock Delay	Both	When an unmonitored lock is in use, this message displays during the unlock delay.
UP/DOWN: Find SET: Go	Both	In diagnostic menu, use UP or DOWN to find diagnostic to execute, then press SET to run it.
Version x.xx.xx	Both	Informational message, where x.xx.xx represents firmware version currently loaded into control.
V1=	Both	Diagnostic item, displays value of +120 V power supply.
V2=	Both	Diagnostic item, displays value of +24 V power supply.
V3=	Both	Diagnostic item, displays value of +15 V power supply.
V4=	Both	Diagnostic item, displays value of +5 V power supply.
Watchdog Timeout	Both	An internal failure or programming error has created a watchdog timerout condition. Consult factory.
Zero Stroke	Belt	Diagnostic menu item, press SET to zero stored stroke. Confirmation is required. Control will automatically execute a complete Learn Cycle next time it is started, if belt drive operator type is chosen.

20. APPENDIX - B Cont:

Status Messsages_C3150 Control V15.00.00 Cont:

MESSAGE	DOOR TYPE	DESCRIPTION
+15V Supply Failure	Both	An internal failure of the control's +15 V supply has occurred. Replace control.
+120V Supply Failure	Both	The control's +120 V power supply is out of tolerance. Check appropriate fuse.
+24V Supply Failure	Both	The control's +24 V power supply is out of tolerance. Check external devices supplied by +24 V control output for shorts.
* Currently implemented only on belt drive door types.		

20. APPENDIX - C

Shortcuts_C3150 Control V15.00.00

TASK	$\begin{gathered} \text { DOOR } \\ \text { TYPE } \end{gathered}$	PROCEDURE
1. Initiate Setup	Both	Hold SET button for at least 2 seconds following a reset or power-up.
2. Initiate Diagnostics Menu	Both	Hold UP button for at least 2 seconds following a reset or power-up or, double-click the UP button during normal operation.
3. Standard Parameter Menu	Both	Turn OFF toggle input (if remote mode not enabled) or, double-click the SET button during normal operation.
4. Cycle Door	Both	Press DOWN button during normal operation.
5. Begin Cycle Testing	Both	Press and hold UP button while pressing DOWN button during normal operation.
6. Force Stroke Re-Learn	Both	Hold SET and DOWN buttons for at least 2 seconds following a reset or power-up. Does not disturb any other parameter settings.
7. Zero Stroke	Both	Hold UP, DOWN and SET buttons for at least 2 seconds following a reset or power-up. Choose "Zero Stroke" from the following sub-menu.
8. Show Encrypted Password	Both	Hold UP, DOWN and SET buttons for at least 2 seconds following a reset or power-up. Choose "Show Code Key" from following sub-menu.
9. Set Rholix Block	Linear	Hold UP and DOWN buttons for at least 2 seconds following a reset or power-up (door must be Linear Drive).
10. Re-Learn Reversing Sensitivities	Both	Double-click the DOWN button during Open-Check or Full-Open portion of door cycle. Display will confirm.

20. APPENDIX - D

Motor Test_C3150 Control V15.00.00

The Motor Test is conducted to determine the resistance across the motor. A low or zero resistance will cause high current draw and damage to the control.

C05655 Motor Harness to E06303 Motor Adapter Cable Then C03150.1500 Control
$\square \quad$ Place OHM meter in range to measure: 10 to 50Ω analog Rx 1 range or $\mathrm{R} 200 \Omega$ digital.
$\square \quad$ Unplug the motor and place probes in Pins 1 and 2. Read and record the resistance.

$\sqcup \quad$ Rotate the motor slightly to advance to the next section of the commutator. (Feel for the motor brushes to make contact with the next segment on the commutator).

NOTICE: A voltage will be induced into the meter when the motor is moved. Therefore wait for the meter to stabilize before taking a reading.
$\sqcup \quad$ Continue taking readings for approximately $1 / 4$ revolution of the output pulley (Pulley is $8: 1$ ratio).

ACCEPTABLE RANGES

Shown for Each Motor Type.

NOTE:

Alow reading is critical and will cause damage to the Control.

Frame Short Test

\square Place the OHM meter in the range to measure at least $20,000 \Omega$. The meter should show infinite resistance when connected.
$\square \quad$ Place meter probes in Pin 1 (BLK) and Pin 3 (GRN/YEL).

- The Meter should not move when the probes are connected.

$\square \quad$ Next, place the meter probes in Pin 2 (RED) and Pin 3 (GRN/YEL).

> - Again, the Meter should not move when the probes are connected.

20. APPENDIX - E

Belt or Linear Drives

OPTEX OS12-CT_2 Channel Photoelectric Safety Beam with Amplifier System

Typical Bi-Part Slide Unit Elevation

Diagram 1: C3150 Control with Actuating and Switch Connections

Belt Drives
Diagram 2: C3150 Control with Actuating and Switch Connections

Horton Automatics
World Headquarters
4242 Baldwin Boulevard Corpus Christi, Texas 78405-3399 USA
Tel: 800.531.3111, 512.888.5591
Fax: 800.531.3108, 512.888.6510
Horton Automatics, Ltd.
United Kingdom
Unit A, Hortonwood 31
Telford, Shropshire, England TFI-4GS
Tel: 01952670169
Fax: 01952670181
Internet: http://www.hortondoors.com
The Automatic Choice A Division of Overhead Door Corporation, A Sanwa Shutter Company
Form H310, NOV 2017 © printed in U.S.A.
Product equipment depicted in the various drawings are approximate and for illustration purposes only. Consult manufacturer for detail product specifications. Horton Automatics reserves the right to improve the product and change it's specifications without notice.

