TECHNICAL SUPPORT : 800-422-6489
Option 3 = Jeff Bonus
Option 4 = Jim Sargent
Option 5 = Jack Karrick

2000 Package - Only SX Panels Breakout - exterior cover.

- Doors slide on exterior of building
- Only SX panels break out for emergency egress.

3000 Package Full Breakout - interior cover.

- All 4 panels break out for emergency egress.
- SX panels slide on interior of building.

When hanging Bi-part sliding panels make sure the tall carrier belt bracket is on the left hand panel (LH Panel when viewed from opened header cover)

Stanley 5200 Telescopic Single Slide Door (Only SX panels breakout).
INTERIOR VIEW

Stanley 5300 Telescopic Single Slide Door, Full Break out.

MC521PRO Control box for Sliding automatic doors
 With optional ECO Switch.

MC-521 PRO P/N 185101

TERMINAL BLOCKS 1 THRU 7

Note: Terminals are not in sequence

Rotary switch / Key switch

OPEN, the door will open or if open will remain open until the switch function is changed. The troubleshoot screen will show TB-2 \#1 BLACK
CLOSE/LOCKED, the door will close and remain closed. If a solenoid lock is installed it will latch the door. The door must be in this position to complete an FIS. The troubleshoot screen will have TB-2 terminals \#1, \#3, \#5 \& \#7 WHITE.

AUTOMATIC, the door will run normally with sensors or activation/safety devices working. The troubleshoot screen will have TB-2 \#3 and \#5 BLACK

ONE-WAY, the sensors using TB-4 terminals \#7- \#8 will be inhibited when the doors are closed. When no lock is installed you must has a DPS installed and the contacts of TB-5 \#7 and \#8 must be shorted contact when the doors are closed and open contact all other times.

RED/OPEN, the door will only open partially. This is set on your palm or with the Index-Value buttons.

ONE-WAY/RED OPEN, the door will only open partially and will only accept one way traffic.

Rotary Function Switch States for TB2

	Hold Open	Closed Locked	Automatic		Oneway		Reduced	Reduced/ Oneway	
TB2-1									
TB2-3									
TB2-5									
TB2-7									

Rotary switch / Key switch

TB-2

Black (HOLD OPEN)

Yellow (COMMON)

Green (REDUCED OPEN)
"......... Note*'To remotely put door into one way, break red wire leave function switch in automatic.

Remote Activation in Closed Lock With Rotary Switch

To remotely activate the slide door when in close and lock:

Belt switch must be wired to Common and Normally Closed and must be keyed when doors are closed. This will keep sensors active until door reaches full closed position.

WANDERGUARD

With Rotary Switch

Belt switch must be wired to Common and Normally Closed and must be keyed when doors are closed. This will keep sensors active until door reaches full closed position.

ROCKER SWITCHES

NOTE: During FIS set Function Switch Type to "Switches"

3 Pos. Rocker switch in CLOSE position

In this position the door will close if open and remain closed, if equipped with a solenoid lock it will engage.

The switch must be in this position to begin an FIS.
Tb-2 term\#1 yellow term\#2 Orange term\#3 Violet

ONE WAY TRAFFIC ON//OFF switch used for door activation from one side only. Sensors will remain active on side not intended for use only when door is opened from the direction intended for use.
TB-2 terminals 5 and 6

Red ON//OFF rocker switch used for reduced open. Door will open to preset width. This switch is used to keep inclement weather out heat or air in. TB-2 terminals 7 and 8

ROCKER SWITCHES
TB-2

Rocker Switches MC521 - Slide Door

Rocker Switches MC521 - Slide Door

Rocker Switches MC521 - Slide Door

Old Style Solenoid Lock

\square

NOTE: This lock cannot be used with Model J control
MC521 TB-1

STANLEY

Make sure that all the sliding door panels are pushed in tightly against each other or the door will not function.

When using one or two motors on a Duraglide door, only one encoder is used. Motor 1 / Encoder 1. The slave motor (motor 2 input) if two motors are used has no encoder.

DURA-GLIDE MOTOR - GEAR BOX

To check a DC mofor unplug motor plug from control, read con hity between the black and white rires, you should read approximatelv 16 ohms. You may also use insulated needle nose pliers and with the motonnerg unplugged short the black and white wires and movemennernould feel heavy resistance to door movement open or close \& should be smooth not jerky.

STANGUARD PRESENCE SENSOR

Under ANSI 156.10-2005 Dual safety beams must be installed with Stanguard sensing systems on sliding automatic door applications

A programmable active infrared (IR) presence sensing device.
a. A built in minimum $\mathbf{1 . 5}$ second hold open delay.
b. Automatic retuning. The sensor will automatically maintain its calibration and makes changes to its reference settings. If the sensor sits overnight or for long periods of time it may need to reinitialize.
c. Frequency shifting whenever two sensors are in close proximity or on the same door a jumper can be installed to eliminate interference between the two.
d. Zone width selection from narrow to wide openings.
e. Detection sensitivity from normal to high for taller openings.
f. Infrared receiver gain control. A potentiometer is provided to increase or decrease the IR receiver sensitivity.

FREQUENCY SELECTOR
INFRARED-EMITTING DIODES D8 TO D15 JUMPER

D-7 OFF an activation signal is being sent to the door, ON no activation signal.
D-16 Indicates level of reflected light being received by the receiver diode. Yellow led may flash when the door is in the closed position.

D-17 Green OFF, no detection, Green ON, detection, Green FLASHING, retuning when door is closed the Green led should be on.

Receiver Board

TB-3

Red, ,14vdc power
Black, -14vdc power
White, common
Green, input

Make sure that the terminal block at the Stanguard unit is wired correctly with the White and Green wires inverted.

TB-1 Red
TB-2 Black
TB-3 Green
TB-4 White

Stanguard presence sensor

521Pro Safety Beams

NOTE: During FIS safety beam type defaults to Pro Beams
--- NOTE: When IR barrier is established
Green LED on Transmitter

* Amber LED on Receiver

OPTEX Holding Beam Input

NOTE: After FIS must set beam type to OPTEX

OS-12 Controller

STANLEY SU-100 MOTION SENSOR

The SU-100 relay is active or the coil is energized when power is applied. The RED led is on and the Common and N/Open terminals are shorted.

When the SU-100 goes into detection or sees someone in its pattern the RED led will go out and the relay will drop out. The Common and N/Closed contacts are then made

SU-100 Active relay Mode

- The SU-100 is power up. But with No Detection The Relay is ACTIVE in the NORMALLY/OPEN State.
- Power is removed from the relay coil during detection
- During detection, the Relay is Passive, coil not energized) the led is off and the relay is NORMALLY/CLOSED
- During a Sensor Failure, The Relay contacts will be CLOSED and an activation signal will be sent to the control.

Based on Doppler Effect Principle:

When a radar strikes a moving object, it is reflected back and its frequency is shifted in proportion to the speed of the object.

Wide antenna

Narrow antenna

STANLEY

X-Zone-T Monitor Capable Sensor

JP200

When enabling monitoring for X -Zone T , the control box needs to be configured.

1. Clip the JP200 jumper wire on the MC521 Pro, located between the two Encoder connectors.

NOTE: AFTER JP200 IS REMOVED, THIS CONTROL BOX CANNOT BE USED WITH A STANGUARD SENSOR.
The JP200 jumper is an internal MC521 Pro connection that enables TB3-4 to be used as an input and output required for StanGuard.
2. Enable Monitoring:
A. Using push buttons on control set Index $19=$ Value 03.
B. Using BT dongle and MC-521 Toolbox application set function Safety Logic = Monitored Sensors.

X-Zone-T wiring to MC-521 Pro

X-Zone-T Mounting Location

Header

Drill (2) 1/8" holes and (1) 5/16" hole as indicated on the template. Remove template from header. Remove the cover from the sensor. Fasten the sensor securely to the header using the supplied screws (do not over-torque screws or sensor body may distort).

For ease of wiring recommend mounting height 2 " from bottom of header to bottom of template.

Exception - Duramax 5400

Cover side of predrilled for mounting. If no prep then place template $1 / 4$ " up from bottom of cover. On Non cover side place template $1 / 4^{\prime \prime}$ up from bottom of header. Drill a $1 / 2^{\prime \prime}$ diameter wire access hole in location as shown below.

X-Zone-T Settings

Remove the cover and unfold the label.

1. Dipswitch settings

NOTE: If uni-directional motion detection is desired, move dipswitches 9 UP.
Refer to instruction manual for details on all dipswitch settings.

Start with dipswitch settings shown upper right. Dipswitch 12 MUST be DOWN \& 13 MUST be UP. All dipswitch functions are listed on the label.

Dipswitches labeled in RED only affect Presence/AIR. Dipswitches labeled in Blue only affect Motion/Microwave.

Adjust Presence/AIR area width with shutters Left \& right area can be set independently

At standard height (89" A.F.F.):
Wide = Approx. 8.5 feet wide
Narrow = Approx. 4.25 feet wide

To adjust the microwave detection area width, use the narrow lens as shown in the picture below.

Adjust the Motion/Microwave area width by installing or removing the Narrow lens.

Wide = Approx. 12.5 feet wide Narrow = Approx. 6.25 feet wide

X-Zone-T Settings Continued

Start with the settings shown below and in most cases no other adjustment will be necessary.

AIR (Presence) and Microwave Angle Adjustments
AIR Angle Adjust
Set Red Ring at-2 degrees (Arrow at Approx. 10 o' clock)

Microwave Angle Adjust Set center Philips adjuster to 38 degrees (Blue Dots are at 20^{\prime} clock)

WARNING: To comply with ANSI A156.10, if the reveal on the door (mounting surface of sensor to face of sliding panel) is greater than $2 \frac{1}{2}$, turn the AIR adjuster (Red Ring) CCW (Shallow) until the door recycles on the closing cycle. Then refer to step 2 under troubleshooting to properly adjust the AIR angle.
4. Microwave Sensitivity

Set to 100^{\prime} clock (two dots at top)

Troubleshooting

Door reopens on closing cycle:

1. Operation LED turns solid Orange then door reopens (Microwave Motion Detecting Door)
a. Reduce sensitivity: turn sensitivity potentiometer CCW.
b. Adjust Microwave angle towards deep (Clockwise) slightly.

NOTE: If recycle continues try turning Microware Immunity ON (Dipswitch 10

2. Operation LED turns Flashing Red, then door reopens
 (Row 2 Presence Detecting Door)
a. Move AIR angle adjustment (Red Ring) slightly Clockwise until ghosting stops.

NOTE: When changing the AIR angle, sensor may go into detection and hold door open. In this case, reset sensor by moving any dipswitch, then move it back.

Door remains open, MC-521 Pro Displays F.O. or F.1. (F.0.=Inside sensor, F.1. = Outside Sensor):

- Verify sensor presence wires (White/Stripe \& Yellow/Stripe) properly connected to control.

Door remains open, MC-521 Pro Displays 0.6. / h.o. alternately:

- Verify Black Wire \& Red wire from Sensor connected properly at control.

Verify sensor dipswitch 12 set Down \& 13 set UP.

Sliding Door Handing

For the Purpose of FIS Only

NOTE: For Bi-part set to Right Hand and ensure Tall Belt Bracket is installed on Left SX Panel (as viewed from header cover side).

FIS with BT Dongle and MC-521 Toolbox

NOTE: Door Mode switch must be set to Closed Locked Position

FIS with BT Dongle and MC-521 Toolbox (Cont.)

FIS with BT Dongle and MC-521 Toolbox (Cont.)

Step 5: If additional configuration is needed, press CONFIGURE DOOR.

Step 6: Configure additional settings and press UPDATE after each setting has been changed. Once completed, press BACK to go back to the Main selection menu.

FIS with BT Dongle and MC-521 Toolbox (Cont.)

NOTE: If using Rotary Switch ensure "Old Rotary" is display at "Switch Type" before selecting "BEGIN AUTOCONFIGURE".

FIS with BT Dongle and MC-521 Toolbox (Cont.)

WARNING: During this sequence the sensors are inactive and the door has no SAFETY. To stop the door, TURN POWER OFF or PUT THE DOORS INTO BREAKOUT.

Step ${ }^{10}$ Door will go through a learn sequence to configure itself. The door will perform the following operations in learn mode:

- Open fully at check speed.
- Close fully at check speed.

To change an (index) you must hold the ENTER button down while moving the UP and DOWN to find the correct index number.

Once you have found the correct index you release the ENTER button and immediately scroll up or down to change the value of that INDEX.

Once you have stopped scrolling up or down the value number will flash and then display the STATUS.

Table 1. FIS (First install sequence) procedure using pushbuttons

STEP\#1	Set function switch to "CLOSED"	INDEX		VALUE
STEP\#2	Turn power ON		STATUS	
STEP\#3	Unlock Keypad	99	00	00
STEP\#4	Restart FIS	96	01	A0
STEP\#5	Select door type Dura-glide (motor)	00	01 (single)	A0
			02 (dual)	
STEP\#6	Select door handing.	01	00 (right)	A0
		01 (left)		
STEP\#7	Accept FIS. Display with go to A1	03	01	A1
STEP\#8	Make changes: Function switch type	11	01 (rocker)	A1
STEP\#9	Select Lock Logic		00 (rotary)	

STEP\#10 WARNING; Sensors and safety inactive during this sequence, to stop the door turn the power off or put the doors into BREAK-OUT!. Put function switch to Hold-Open and then back to OFF. Door should open to stops and close, the display will show A2.
STEP\#11 Lock the keypad
99
01
0056

MAKE SURE DOOR IS IN COMPLIANCE WITH ANSI 156.10-2011

Miin.	Max					Table 4.	tos Codes
Value	Value	Dexniption	Single	Dual	Status	Description	Remediation If uecessary
05	35	Open speed increment by 1.	25	25	Code		
05	18	Close speed revolutions per second.	12	12	00	Nomal operation-Allor	
03	10	Check speed revolutions per sexond	04	04	0	Nomal operaion-Alor	
10	99	Open check lengli percerti of fill opering.	35	35	Ob	Obsinution	
10	99	Close check kength percentit of fill opening.	30	30	20	Breakout	
∞	99	Rediced open position, percent of fill opening ($0=$ =fill open, 99=fill close).	50	50			
01	99	Hold opendelay (0 to 25 sec.).	03	03	33	System emor	1. Reset Power
		Lock Logic, $00=$ Fiil Safe, $01=$ Fail Secure, $02=$ Duna-Max Fail Safe, $03=$ Dura-Mas Fvil Secure					2. If wole does not clar, Cill Tech Support
01	03	Note: For locks with circuit board set to 01 Fail Secure. For locks with no	01	01	A0	Fisst instilation sequence (FIS)	
		circuit bourd set to Fail S afe or Fail Secure.			A1	Auto-configurion sequence	
∞	75	Open torcue, percent of fill scale.	25	25	A2		
∞	75	Close torcue, percent of fill sale.	25	15	A.	Auto-conigurano conimation sequice	
∞	75	Check torque, percent of fill scale.	25	10	b1	Encoder error	
∞	01	Dua-Glide fiuction switch type: $00=$ double pole rotary, $01=$ rocker	01	01	Ld	Lock Down(Shear Lock Enargived)	
∞	01	25 Operation, $0=$ off, $1=0 \mathrm{n}$	00	0	L	Lock Donr (mar lack Enapey)	
		Obstruction Time Delay (01-1.5 sec) Hesvy and dual motor doors my			ds	Display door cycla coumter	
01	60	require a longer obstruction time (45 on buttons or 1.2 sec. on Palm).	20	40	$\mathfrak{d E}$	Delyyed Egess	
20	60	Open Acceleration (arger valueffaster acceleration).	50	50	d10		
20	60	Open Braing (arger vaiue-icreased traking). $20=$ No open braking	54	54	El	Upper hold beam sensor error	Verify senor wing and gefev logic geting
20	60	Close Acceleration (arger value-faster acceleration).	20	20	E3	Doar lengh aror	Re-do firs instilation sequance (FIS)
20	60	Close Braing, (arger value-incresed traling). $20=$ No cose braking	40	40	E4	Safty sensor anor	Verify sensor wing and sfery logic seting
∞	02	00=0ff(Delay Egress), $01=15$ sec. delay, $02=30$ sec. delay	00	∞	E5	Inside ativation senson eror	Verif sensor wing and sfeyly logic setting
∞	04	Sufety Logic, Do Not Change. Must be set to 04.	04	04	E6	Outride activation sensor enror	Verify sensor wing and sfety logic setiug
∞	01	Hold Beam Type	01	01	E7	Lower hold bean sansor aror	Verify sensor wing and sfety logic satiug
		$00=0$ preak $01=$ Photo Beam Pro			E8	Inside presence serior aror	Verify sensor wing and sfeyly logic seting
01	50	Lock Delay (0.1-5.0 sec)	01	01			
∞	64	Open Stop Distacce ($1 / 8^{\text {" increments) fom fill open the door will stop. }}$	04	04	F9	Outide presence senson arom	Very sensor wnis and steyy loge seturg
∞	01	Access Control Pro $00=$ off $01=$ on	00	∞	F1	Outide Active senom fillire	Verify sensm wing and sfey logic seting
∞	03	Press Time, $00=$ lests anoont, $03=$ wiost amount of presing After obstruction timeour, the number of seconds the door preses at Full Closed	01	01	F2	Upper Photo Bem Pro sensor failue	Check transuitter, receiver, and hold bean tye
					F3	Lower Photo Beam Pro gensor failue	Check transuitter, receiver, and hold bean tye
Door must be cycled open for changes to be sored in permanent memory.					ho	Door held gpen	Ched sensos and hold bean type

Relay Terminology / Logic

Relay Terminology / Logic

ACTIVE vs. PASSIVE Relays (Sensors)

ACTIVE vs. PASSIVE Relays (Sensors)

WET vs. DRY Relay Output

A WET output relay actually applies some sort of voltage to the connected equipment. Generally a voltage is applied to the COM and transferred to the N.O. or N.C. contact, which in turn is applied to the connected equipment. Wet output relays are generally used for applying voltage to a device such as a magnetic lock or an electric strike.

N/C inputs vs. N/O inputs (Series) vs. (Parallel)

N/C sensor inputs with multiple sensors
Sensors must be connected in series with the input

N/O sensor inputs with multiple sensors
Sensors must be connected in parallel with the input

